Experimental neurology
-
Experimental neurology · Oct 2009
ReviewHuntington's disease: the current state of research with peripheral tissues.
Huntington's disease (HD) is a genetically dominant condition caused by expanded CAG repeats. These repeats code for a glutamine tract in the HD gene product huntingtin (htt), which is a protein expressed in almost all tissues. ⋯ These studies show that in peripheral tissues, mutated htt causes accumulation of intracellular protein aggregates, impairment of energetic metabolism, transcriptional deregulation and hyperactivation of programmed cell-death mechanisms. Here, we review the current knowledge of peripheral tissue alterations in HD patients and in animal models of HD and focus on how this information can be used to identify potential therapeutic possibilities and biomarkers for disease progression.
-
Experimental neurology · Oct 2009
Tissue kallikrein protects cortical neurons against in vitro ischemia-acidosis/reperfusion-induced injury through the ERK1/2 pathway.
Human tissue kallikrein (hTK) gene transfer has been shown to protect neurons against cerebral ischemia/reperfusion (I/R) injury, and exogenous tissue kallikrein (TK) administration can enhance neurogenesis and angiogenesis following focal cortical infarction. Previous studies have reported that acidosis is a common feature of ischemia and plays a critical role in brain injury. However, little is known about the role of TK in ischemia-acidosis-induced injury, which is partially caused by the activation of acid-sensing ion channels (ASICs). ⋯ Moreover, blockade of ASICs had effects similar to TK administration, suggesting direct or indirect involvement of ASICs in TK protection. In conclusion, TK has antioxidant characteristics and is capable of alleviating ischemia-acidosis/reperfusion-induced injury, inhibiting apoptosis and promoting cell survival in vitro through activating the ERK1/2 signaling pathways. Therefore, TK represents a promising therapeutic strategy for ischemic stroke.
-
Experimental neurology · Oct 2009
Sleep disorders in Parkinson's disease: the contribution of the MPTP non-human primate model.
To replicate the sleep-wake disorders of Parkinson's disease (PD) and to understand the temporal relationship between these sleep disturbances and the occurrence of parkinsonism, we performed long-term continuous electroencephalographic monitoring of vigilance states in unrestrained rhesus monkeys using an implanted miniaturized telemetry device and tested the effect of MPTP intoxication on their sleep-wake organization. MPTP injection yielded a dramatic disruption of sleep-wake architecture with reduced sleep efficacy that persisted years after MPTP administration. Primary deregulation of REM sleep and increased daytime sleepiness occurring before the emergence of motor symptoms were a striking feature of the MPTP effect. ⋯ In the long term, partial re-emergence of REM sleep paralleled the partial adaptation to parkinsonism, the latter being known to result from compensatory mechanisms within the dopaminergic system. Altogether, these findings highlight the suitability of the MPTP model of PD as a tool to model the sleep/wake disturbances of the human disease. Ultimately, this may help in deciphering the specific role of dopamine depletion in the occurrence of these disorders.
-
Experimental neurology · Oct 2009
GIF-0173 protects against cerebral infarction through DP1 receptor activation.
The neuroprotective effects and mechanism of action of GIF-0173, a Delta12-prostaglandin J analogue, were investigated in the early phase of cerebral ischemia. GIF-0173 was administered intravenously immediately following middle cerebral artery occlusion (MCAO) in photochemically induced thrombosis model of rat. Neurological scores and infarct sizes were examined at 24 h after MCAO. ⋯ GIF-0173 dose-dependently suppressed the glutamate-induced increase in [Ca(2+)](i), but could not inhibit NMDA-induced calcium influx. The effects of GIF-0173 against glutamate-induced [Ca(2+)](i) increase were reversed by addition of non-specific prostaglandin D (PGD(2)) receptor antagonist and were comparable to the effects of PGD(2) DP1 receptor agonist, which prevented [Ca(2+)](i) increase and neuronal death. We conclude that GIF-0173 reduces cerebral infarction and protects cultured neurons against glutamate-induced excitotoxicity by inhibiting [Ca(2+)](i) increase through DP1 receptor activation.
-
Experimental neurology · Oct 2009
Moderate traumatic brain injury promotes proliferation of quiescent neural progenitors in the adult hippocampus.
Recent evidence shows that traumatic brain injury (TBI) regulates proliferation of neural stem/progenitor cells in the dentate gyrus (DG) of adult hippocampus. There are distinct classes of neural stem/progenitor cells in the adult DG, including quiescent neural progenitors (QNPs), which carry stem cell properties, and their progeny, amplifying neural progenitors (ANPs). The response of each class of progenitors to TBI is not clear. ⋯ We examined changes in proliferation of QNPs and ANPs in the acute phase following TBI and found that QNPs were induced by TBI insult to enter the cell cycle whereas proliferation of ANPs was not significantly affected. These results indicate that different subtypes of neural stem/progenitor cells respond differently to TBI insult. Stem cell activation by the TBI may reflect the induction of innate repair and plasticity mechanisms by the injured brain.