Experimental neurology
-
Experimental neurology · Dec 2012
Mitotoxicity and bortezomib-induced chronic painful peripheral neuropathy.
Many of the most effective anti-cancer drugs induce a dose-limiting peripheral neuropathy that compromises therapy. Evidence from animal models of chemotherapy-induced painful peripheral neuropathy produced by the taxane agent, paclitaxel, and the platinum-complex agent, oxaliplatin, indicate that they produce neuropathy via a common mechanism-a toxic effect on the mitochondria in primary afferent sensory neurons. Bortezomib is from the proteasome-inhibitor class of chemotherapeutics. ⋯ We found significant deficits in Complex I-mediated and Complex II-mediated respiration, and in ATP production at both time points. Prophylactic treatment with acetyl-L-carnitine, which has previously been shown to prevent paclitaxel- and oxaliplatin-induced mitochondrial dysfunction and pain, completely blocked bortezomib's effects on mitochondria and pain. These results suggest that mitotoxicity may be the core pathology for all chemotherapy-induced peripheral neuropathy and that drugs that protect mitochondrial function may be useful chemotherapy adjuncts.
-
Experimental neurology · Dec 2012
Experimental modeling of recombinant tissue plasminogen activator effects after ischemic stroke.
Recombinant tissue plasminogen activator (rt-PA) is currently the only approved drug for ischemic stroke treatment, with a dose of 0.9 mg/kg. Since the fibrinolytic activity of rt-PA has been reported in vitro to be 10-fold less potent in rodent than in human, in most in vivo experimental models of cerebral ischemia rt-PA is used at 10 mg/kg. The purpose of this study was to compare the effects of the "human" (0.9 mg/kg) and "rodent" (10 mg/kg) doses of rt-PA given at an early or a delayed time point in a mouse model of cerebral ischemia. ⋯ Early administration of both doses of rt-PA reduced the neurological deficit, lesion volume and brain edema, without modifying post-ischemic HT. Injected at 4 h, rt-PA at 0.9 and 10 mg/kg lost its beneficial effects and worsened HT. In conclusion, in the mouse thrombin stroke model, the "human" dose of rt-PA exhibits effects close to those observed in clinic.
-
Experimental neurology · Dec 2012
Randomized Controlled TrialTreatment of rats with pioglitazone in the reperfusion phase of focal cerebral ischemia: a preclinical stroke trial.
Thiazolidinediones (TZDs), pioglitazone, rosiglitazone and troglitazone, the synthetic agonists for the PPARγ, administered prior or during ischemic insult improve stroke outcome in rodents, post-occlusion treatments yielded inconsistent results. In the present experiments carried out according to the Stroke Therapy Academic Industry Roundtable (STAIR) guidelines, we studied the effects of post-ischemic pioglitazone treatment on the outcome of focal cerebral ischemia, inflammatory and apoptotic processes, neuronal degeneration and regeneration, blood pressure, heart rate and physiological variables in blood. Male Wistar rats were subjected to a 90 min middle cerebral artery occlusion (MCAO). ⋯ The current results provide evidence that pioglitazone treatment in the post-ischemic, reperfusion phase improves the recovery from ischemic stroke. Neuroprotective effects of pioglitazone are mediated by inhibition of post-ischemic inflammation and neuronal degeneration, protection of neurones against ischemic injury and by promoting of neuronal regeneration. Our data together with previous findings favour the view that pioglitazone is a promising candidate for clinical stroke trials.
-
Experimental neurology · Dec 2012
Chronic noise exposure causes persistence of tau hyperphosphorylation and formation of NFT tau in the rat hippocampus and prefrontal cortex.
The non-auditory effects of noise exposure on the central nervous system have been established both epidemiologically and experimentally. Chronic noise exposure (CNE) has been associated with tau hyperphosphorylation and Alzheimer's disease (AD)-like pathological changes. However, experimental evidence for these associations remains limited. ⋯ Furthermore, lasting increases in proteins involved in hyperphosphorylation, namely glycogen synthase kinase 3β (GSK3β) and protein phosphatase 2A (PP2A), were found to occur in close correspondence with increase in tau hyperphosphorylation. The results of this study show that CNE leads to long-lasting increases in non-NFT hyperphosphorylated tau and delayed formation of misfolded NFT tau in the hippocampus and the prefrontal cortex. Our results also provide evidence for the involvement of GSK3β and PP2A in these processes.