Experimental neurology
-
Experimental neurology · Jan 2012
Clinical TrialThe role of the sub-thalamic nucleus in the preparation of volitional movement termination in Parkinson's disease.
The sub-thalamic nucleus (STN) is relevant to the preparation of movement ignition but its role in movement termination is uncertain. Fourteen patients with Parkinson's disease (PD) received local field potentials (LFPs) recording at the left STN on the fourth day after deep brain stimulation surgery. They performed phasic and tonic movements of the right wrist extensor. ⋯ Alpha, low-beta, and high-beta ERD all appeared about 1s prior to the Moff tonic movement. The current findings suggest that STN participates in the preparation of volitional movement termination but via a different mechanism from that in movement initiation. Unlike asynchronous ERD frequency bands present in movement initiation, a simultaneous ERD across wide frequency bands in STN may play a pivotal role in terminating volitional movement.
-
Experimental neurology · Jan 2012
Comparative StudyComparative effects of glibenclamide and riluzole in a rat model of severe cervical spinal cord injury.
Both glibenclamide and riluzole reduce necrosis and improve outcome in rat models of spinal cord injury (SCI). In SCI, gene suppression experiments show that newly upregulated sulfonylurea receptor 1 (Sur1)-regulated NC(Ca-ATP) channels in microvascular endothelial cells are responsible for "persistent sodium currents" that cause capillary fragmentation and "progressive hemorrhagic necrosis". Glibenclamide is a potent blocker of Sur1-regulated NC(Ca-ATP) channels (IC(50), 6-48 nM). ⋯ At 6 weeks, modified (unilateral) Basso, Beattie, Bresnahan locomotor scores were similar, but measures of complex function (grip strength, rearing, accelerating rotarod) and tissue sparing were significantly better with glibenclamide than with riluzole. We conclude that both drugs act similarly, glibenclamide on the regulatory subunit, and riluzole on the putative pore-forming subunit of the Sur1-regulated NC(Ca-ATP) channel. Differences in specificity, dose-limiting potency, or in spectrum of action may account for the apparent superiority of glibenclamide over riluzole in this model of severe SCI.
-
Experimental neurology · Jan 2012
The effect of amyloid associated proteins on the expression of genes involved in amyloid-β clearance by adult human astrocytes.
Astrocytes appear to be important mediators in the clearance of amyloid beta1-42 (Aβ), the key component of senile plaques characteristic of Alzheimer's disease (AD). Recently, we found the amyloid associated proteins (AAPs) α1-antichymotrypsin (ACT), apolipoprotein J and E (ApoJ and ApoE) and a mixture of serum amyloid P (SAP) and C1q (SAP-C1q) to modify Aβ-uptake by human astrocytes. Here we investigated the effect of oligomeric (Aβoligo) and fibrillar Aβ (Aβfib), alone and in combination with a panel of AAPs on the astrocytic expression of genes proposed to be involved in Aβ-uptake and degradation. ⋯ Thus, we conclude that Aβ alone apparently does not affect the astrocytic expression of IDE, NEP or SCARB1. However, NEP and SCARB1 expression is increased in astrocytes from non-demented subjects when exposed to Aβ combined with AAPs like ApoE. These astrocytic gene expression-regulatory mechanisms appear to be defective in AD and thus might contribute to the development and progression of AD pathology.
-
Experimental neurology · Jan 2012
Upregulation of fibronectin and the α5β1 and αvβ3 integrins on blood vessels within the cerebral ischemic penumbra.
Following focal cerebral ischemia, blood vessels in the ischemic border, or penumbra, launch an angiogenic response. In light of the critical role for fibronectin in angiogenesis, and the observation that fibronectin and its integrin receptors are strongly upregulated on angiogenic vessels in the hypoxic CNS, the aim of this study was to establish whether angiogenic vessels in the ischemic CNS also show this response. Focal cerebral ischemia was established in C57/Bl6 mice by middle cerebral artery occlusion (MCA:O), and brain tissue analyzed 7 days following re-perfusion, a time at which angiogenesis is ongoing. ⋯ Within the ischemic penumbra, dual-IF with CD31 and Ki67 revealed the presence of proliferating endothelial cells, indicating ongoing angiogenesis. Significantly, vessels in the ischemic penumbra showed strong upregulation of fibronectin and the fibronectin receptors, α5β1 and αvβ3 integrins. Taken together with our recent finding that the α5β1 integrin plays an important role in promoting cerebral angiogenesis in response to hypoxia, these results suggest that stimulation of the fibronectin-α5β1 integrin signaling pathway may provide a novel approach to amplifying the intrinsic angiogenic response to cerebral ischemia.
-
Experimental neurology · Jan 2012
The transcription factor Sox11 promotes nerve regeneration through activation of the regeneration-associated gene Sprr1a.
Factors that enhance the intrinsic growth potential of adult neurons are key players in the successful repair and regeneration of neurons following injury. Injury-induced activation of transcription factors has a central role in this process because they regulate expression of regeneration-associated genes. Sox11 is a developmentally expressed transcription factor that is significantly induced in adult neurons in response to injury. ⋯ Downstream targets of HSV-Sox11 were examined by analyzing changes in gene expression of known regeneration-associated genes. This analysis in combination with mutational and chromatin immunoprecipitation assays indicates that the ability of Sox11 to accelerate in vivo nerve regeneration is dependent on its transcriptional activation of the regeneration-associated gene, small proline rich protein 1a (Sprr1a). This finding reveals a new functional linkage between Sox11 and Sprr1a in adult peripheral neuron regeneration.