Experimental neurology
-
Experimental neurology · May 2012
Olig1 function is required for remyelination potential of transplanted neural progenitor cells in a model of viral-induced demyelination.
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) resulting in cumulative neurologic deficits associated with progressive myelin loss. We have previously shown that transplantation of neural progenitor cells (NPCs) into mice persistently infected with the JHM strain of mouse hepatitis virus (JHMV) results in enhanced differentiation into oligodendrocyte progenitor cells (OPCs) that is associated with remyelination and axonal sparing. The current study examines the contributions of the transcription factor Olig1 on NPC differentiation and remyelination. ⋯ In contrast, the majority of transplanted Olig1-/- NPCs differentiated into GFAP-positive cells consistent with the astrocyte lineage. These results indicate that exogenous NPCs contribute to improved clinical and histological outcome and this is associated with remyelination by this donor population. Further, these findings reveal that Olig1function is required for the remyelination potential of NPCs after transplant, through specification and/or maintenance of oligodendroglial identity.
-
Experimental neurology · May 2012
Altered ventral striatal activation during reward and punishment processing in premanifest Huntington's disease: a functional magnetic resonance study.
Recent research using various neuroimaging methods revealed the crucial role of the striatum concerning the neuropathology of Huntington's disease. Degenerative changes located in the basal ganglia are already observable in premanifest stages of Huntington's disease (pre-HD), i.e., before the onset of manifest motor symptoms. Although the impact of the striatum on reward and punishment processing is well-established in healthy subjects, these processes have not been investigated in manifest and premanifest HD subjects using functional magnetic resonance imaging (fMRI) so far. ⋯ In contrast to pre-HD(far) and healthy subjects, no significant ventral striatal discrimination between punishing and control cues was detected in pre-HD(near) subjects. In the present study, we demonstrated for the first time significant differences in valence discrimination in pre-HD(near) subjects compared to pre-HD(far) subjects and healthy controls. Altered reward and punishment processing could therefore reflect a motivational deficit that may contribute to the pathogenesis of Huntington's disease.
-
Experimental neurology · May 2012
Comprehensive locomotor outcomes correlate to hyperacute diffusion tensor measures after spinal cord injury in the adult rat.
In adult rats, locomotor deficits following a contusive thoracic spinal cord injury (SCI) are caused primarily by white matter loss/dysfunction at the epicenter. This loss/dysfunction decreases descending input from the brain and cervical spinal cord, and decreases ascending signals in long propriospinal, spinocerebellar and somatosensory pathways, among many others. Predicting the long-term functional consequences of a contusive injury acutely, without knowledge of the injury severity is difficult due to the temporary flaccid paralysis and loss of reflexes that accompany spinal shock. ⋯ In the adult rat model of SCI, we found that hyperacute (<3h post-injury) DTI of the lateral and ventral white matter at the injury epicenter was predictive of both electrophysiological and behavioral (locomotor) recovery at 4 weeks post-injury, despite the presence of flaccid paralysis/spinal shock. Regions of white matter with a minimum axial diffusivity of 1.5 μm(2)/ms at 3h were able to conduct action potentials at 4 weeks, and axial diffusivity within the lateral funiculus was highly predictive of locomotor function at 4 weeks. These observations suggest that acute DTI should be useful to provide functional predictions for spared white matter following contusive spinal cord injuries clinically.
-
Experimental neurology · May 2012
Impact of inhibition of erythropoietin treatment-mediated neurogenesis in the dentate gyrus of the hippocampus on restoration of spatial learning after traumatic brain injury.
Our previous study demonstrates that delayed (initiated 24h post injury) erythropoietin (EPO) therapy for traumatic brain injury (TBI) significantly improves spatial learning. In this study, we investigated the impact of inhibition of EPO treatment-mediated neurogenesis on spatial learning after experimental TBI. Young male Wistar rats (318+/-7 g) were subjected to unilateral controlled cortical impact injury. ⋯ Ara-C infusion significantly abolished neurogenesis and spatial learning recovery after TBI and EPO treatment. Both EPO and Ara-C reduced the number of astrocytes and microglia/macrophages in the dentate gyrus after TBI. Our findings are highly suggestive for an important role of EPO-amplified dentate gyrus neurogenesis as one of the mechanisms underlying EPO therapeutic treatments after TBI, strongly indicating that strategies promoting endogenous neurogenesis may hold an important therapeutic potential for treatment of TBI.
-
Experimental neurology · May 2012
Cuprizone-induced demyelination in the rat cerebral cortex and thyroid hormone effects on cortical remyelination.
Multiple Sclerosis (MS) is an inflammatory demyelinating disease of the Central Nervous System which is characterized by multifocal demyelinated lesions dispersed throughout the brain. Although white matter lesions have been the most extensively studied, cortical demyelinaton lesions are also detected in MS brains. Cuprizone (CPZ)-induced demyelination in rodents has been widely used as a model for MS. ⋯ After removal of CPZ from the diet, we evaluate intranasal Thyroid hormone (TH) effects on the progression of cortical lesions. As previously reported in the CC, TH treatment also accelerates remyelination rate in the cortex compared to rats undergoing spontaneous remyelination. Our results suggest that manipulation of TH levels could be considered as a strategy to promote remyelination process in the cortex and to prevent neuronal irreversible damage in patients suffering from MS.