Experimental neurology
-
Experimental neurology · Mar 2014
Paclitaxel alters the evoked release of calcitonin gene-related peptide from rat sensory neurons in culture.
Peripheral neuropathy (PN) is a debilitating and dose-limiting side effect of treatment with the chemotherapeutic agent, paclitaxel. Understanding the effects of paclitaxel on sensory neuronal function and the signaling pathways which mediate these paclitaxel-induced changes in function are critical for the development of therapies to prevent or alleviate the PN. The effects of long-term administration of paclitaxel on the function of sensory neurons grown in culture, using the release of the neuropeptide calcitonin gene-related peptide (CGRP) as an endpoint of sensory neuronal function, were examined. ⋯ When neurons were stimulated with capsaicin or AITC, a low concentration of paclitaxel (10nM) augmented transmitter release, whereas a high concentration (300 nM) reduced transmitter release in a time-dependent manner; however, when high extracellular potassium was used as the evoking stimulus, all concentrations of paclitaxel augmented CGRP release from sensory neurons. These results suggest that paclitaxel alters the function of sensory neurons in vitro, and suggest that the mechanisms by which paclitaxel alters neuronal function may include functional changes in TRP channel activity. The described in vitro model will facilitate future studies to identify the signaling pathways by which paclitaxel alters neuronal sensitivity.
-
Non-dystrophic myotonias are rare diseases caused by mutations in skeletal muscle chloride and sodium ion channels with considerable phenotypic overlap between diseases. Common symptoms include muscle stiffness, transitory weakness, fatigue, and pain. Although seldom life-shortening, these myotonias cause life-time disability and affected individuals cannot perform many daily activities. ⋯ A recent study published in Experimental Neurology (Desaphy et al., 2013) explored this question further by comparing the biophysical properties of 3 chloride channel mutations associated with recessive myotonia congenita, with varying susceptibility to transient weakness. The authors identified a variety of functional defects in channel behavior among the 3 mutations, suggesting that this variability contributes to the differing phenotypes among chloride channelopathies. This commentary discusses nondystrophic myotonias, the results of Desaphy et al., and the treatment challenges in this rare disease.
-
Experimental neurology · Mar 2014
Ribosomal S6 kinase regulates ischemia-induced progenitor cell proliferation in the adult mouse hippocampus.
Ischemia-induced progenitor cell proliferation is a prominent example of the adult mammalian brain's ability to regenerate injured tissue resulting from pathophysiological processes. In order to better understand and exploit the cell signaling mechanisms that regulate ischemia-induced proliferation, we examined the role of the p42/44 mitogen-activated protein kinase (MAPK) cascade effector ribosomal S6 kinase (RSK) in this process. ⋯ Using the neurosphere assay, we also show that both SGZ- and subventricular zone (SVZ)-derived adult neural stem cells (NSC) exhibit a significant reduction in proliferation in the presence of RSK and MAPK inhibitors. Taken together, these data reveal RSK as a regulator of ischemia-induced progenitor cell proliferation, and as such, suggest potential therapeutic value may be gained by specifically targeting the regulation of RSK in the progenitor cell population of the SGZ.
-
Experimental neurology · Mar 2014
Spreading depression triggers ictaform activity in partially disinhibited neuronal tissues.
There is unequivocal electrophysiological evidence that spreading depression (SD) can trigger epileptiform field potentials. In vitro experiments on human brain tissues indicated that γ-aminobutyric acid (GABA)-mediated inhibition prevented this process. Intra- and extracellular recordings of bioelectrical activities were performed in the rodent neocortex, hippocampus and amygdala after perfusion of low concentrations of the GABAA antagonist bicuculline and induction of SD by KCl application. ⋯ Changes of characteristic features of APs occurred after SD persisted during the appearance of epileptiform activities. These results indicate that SD increases neuronal excitability and facilitates synchronization of neuronal discharges in the presence of partial disinhibition of neuronal tissues. Our findings might explain the occurrence of seizures in neurological disorders with partial impairment of inhibitory tone, such as brain ischemia and epilepsy.