Experimental neurology
-
Experimental neurology · Jul 2019
ReviewTranslational approach towards determining the role of cerebral autoregulation in outcome after traumatic brain injury.
Cerebral autoregulation is impaired after traumatic brain injury (TBI), contributing to poor outcome. In the context of the neurovascular unit, cerebral autoregulation contributes to neuronal cell integrity and clinically Glasgow Coma Scale is correlated to intactness of autoregulation after TBI. Cerebral Perfusion Pressure (CPP) is often normalized by use of vasoactive agents to increase mean arterial pressure (MAP) and thereby limit impairment of cerebral autoregulation and neurological deficits. ⋯ This review will describe translational studies using a more human like animal model (the pig) of TBI to identify better therapeutic strategies to improve outcome post injury. These studies also investigated the role of age and sex in outcome and mechanism(s) involved in improvement of outcome in the setting of TBI. Additionally, this review considers use of inhaled nitric oxide as a novel neuroprotective strategy in treatment of TBI.
-
Experimental neurology · Jul 2019
ReviewDoes pediatric traumatic brain injury cause adult alcohol misuse: Combining preclinical and epidemiological approaches.
Traumatic brain injury (TBI) is closely interrelated with alcohol use disorders. This is mediated, in part, by the large number of individuals who are intoxicated at the time of their injuries. However, there is also evidence, both preclinically and epidemiologically that TBI, particularly when it occurs early in life can increase the incidence of alcohol use disorders later on. ⋯ In this review we discuss the epidemiological evidence for increased drinking in humans. Further, we discuss, the animal models for increased drinking after TBI and the potential mechanistic insights that have been derived from those animal models. We conclude, based on the framework described, that it is possible that pediatric TBI causes alcohol use disorders in humans.
-
Experimental neurology · Jul 2019
Repetitive closed-head impact model of engineered rotational acceleration (CHIMERA) injury in rats increases impulsivity, decreases dopaminergic innervation in the olfactory tubercle and generates white matter inflammation, tau phosphorylation and degeneration.
Traumatic brain injury (TBI) affects at least 3 M people annually. In humans, repetitive mild TBI (rmTBI) can lead to increased impulsivity and may be associated with chronic traumatic encephalopathy. To better understand the relationship between repetitive TBI (rTBI), impulsivity and neuropathology, we used CHIMERA (Closed-Head Injury Model of Engineered Rotational Acceleration) to deliver five TBIs to rats, which were continuously assessed for trait impulsivity using the delay discounting task and for neuropathology at endpoint. ⋯ Consistent with diffuse axonal injury generated by CHIMERA, white matter inflammation, tau immunoreactivity and degeneration were observed in the optic tract and corpus callosum. Finally, pronounced grey matter microgliosis was observed in the olfactory tubercle. Our results provide insight into the mechanisms by which rTBI leads to post-traumatic psychiatric-like symptoms in a novel rat TBI platform.
-
Experimental neurology · Jul 2019
Upregulation of interleukin-6 on Cav3.2 T-type calcium channels in dorsal root ganglion neurons contributes to neuropathic pain in rats with spinal nerve ligation.
The T-type calcium channels Cav3.2, one of the low voltage-activated (LVA) calcium channels, have been found to play important roles in the neuronal excitability. Recently, we and others have demonstrated that accumulation of Cav3.2 channels in the dorsal root ganglion (DRG) neurons and sensory nerves contributes to neuropathic pain after peripheral nerve injury. In the present study, we aimed to further investigate the regulation of Cav3.2 channels by interleukin-6 (IL-6) in DRG neurons in neuropathic pain rats after spinal nerve ligation (SNL). ⋯ Furthermore, inhibition of IL-6 trans-signaling reduced the upregulation of Cav3.2 T-type channel induced by FIL-6 (a fusion protein of IL-6 and sIL-6R) in primary cultured DRG neurons in vitro. In vivo, inhibition of IL-6 trans-signaling reversed the upregulation of Cav3.2, reduced the hyperexcitability of L5 DRG neurons and alleviated mechanical allodynia in SNL rats. Our results suggest that IL-6 upregulates Cav3.2 T-type channels expression and function through the IL-6/sIL-6R trans-signaling pathway in DRG neurons, thus contributes to the development of neuropathic pain in SNL rats.
-
Experimental neurology · Jul 2019
FGF21 promotes functional recovery after hypoxic-ischemic brain injury in neonatal rats by activating the PI3K/Akt signaling pathway via FGFR1/β-klotho.
Perinatal asphyxia often results in neonatal cerebral hypoxia-ischemia (HI), which is associated with high mortality and severe long-term neurological deficits in newborns. Currently, there are no effective drugs to mitigate the functional impairments post-HI. Previous studies have shown that fibroblast growth factor 21 (FGF21) has a potential neuroprotective effect against brain injury. ⋯ In isolated primary cortical neurons, the rhFGF21 treatment protected primary neurons from oxygen-glucose deprivation (OGD) insult by inhibiting neuronal apoptosis and promoting neuronal survival. Both our in vivo and in vitro results reveal that rhFGF21 could inhibit neuronal apoptosis by activating the PI3K/Akt signaling pathway via FGF21/FGFR1/β-klotho complex formation. Therefore, rhFGF21 may be a promising therapeutic agent for promoting functional recovery after HI-induced neonatal brain injury.