Experimental neurology
-
Experimental neurology · Nov 2020
ReviewThe closed-head impact model of engineered rotational acceleration (CHIMERA) as an application for traumatic brain injury pre-clinical research: A status report.
Closed-head traumatic brain injury (TBI) is a worldwide concern with increasing prevalence and cost to society. Rotational acceleration is a primary mechanism in TBI that results from tissue strains that give rise to diffuse axonal injury. The Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA) was recently introduced as a method for the study of impact acceleration effects in pre-clinical TBI research. ⋯ However, the majority of CHIMERA studies only utilize adult male mice. To further establish this model, more work with female animals and various age groups need to be performed, as well as studies to further establish and standardize methodologies for validation of the models for clinical relevance. Common data elements to standardize the reporting methodology for the CHIMERA literature are suggested.
-
Experimental neurology · Nov 2020
Loss of diffuse noxious inhibitory control after traumatic brain injury in rats: A chronic issue.
Chronic pain is one of the most challenging and debilitating symptoms to manage after traumatic brain injury (TBI), yet the underlying mechanisms remain elusive. The disruption of normal endogenous pain control mechanisms has been linked to several forms of chronic pain and may play a role in pain after TBI. We hypothesized therefore that dysfunctional descending noradrenergic and serotonergic pain control circuits may contribute to the loss of diffuse noxious inhibitory control (DNIC), a critical endogenous pain control mechanism, weeks to months after TBI. ⋯ Intact α2 adrenoceptor signaling, however, was not required for the serotonin-mediated restoration of DNIC after TBI. These results suggest that TBI causes maladaptation of descending nociceptive signaling mechanisms and changes in the function of both adrenergic and serotonergic circuits. Such changes could predispose those with TBI to chronic pain.
-
Experimental neurology · Nov 2020
Rostromedial tegmental nucleus-substantia nigra pars compacta circuit mediates aversive and despair behavior in mice.
GABAergic neurons in the rostromedial tegmental nucleus (RMTg) receive major input from the lateral habenula (LHb), which conveys negative reward and motivation related information, and project intensively to midbrain dopamine neurons, including those in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). The RMTg-VTA circuit has been shown to be linked to the affective behavior, but the role of the RMTg-SNc circuit in aversion and depression has not been well understood. This study demonstrated that exciting or inhibiting VgatRMTg-SNc neurons was sufficient to increase or decrease immobility time in the forced swim test (FST), respectively. ⋯ Furthermore, inhibiting the VgatRMTg-SNc pathway reversed behavioral despair in chronic restraint stress (CRS) depression model mice. Manipulations of the pathway did not affect the hedonic value of the reward in the sucrose-preference test (SPT) or general motor function. In conclusion, these results indicate that the VgatRMTg-SNc pathway regulates aversive and despair behavior, which suggests that the RMTg may mediate the role of LHb in negative behaviors through regulating the activity of SNc neurons.