Experimental neurology
-
Experimental neurology · Feb 2020
Increased severity of the CHIMERA model induces acute vascular injury, sub-acute deficits in memory recall, and chronic white matter gliosis.
Traumatic brain injury (TBI) is a leading cause of death and disability in modern societies. Diffuse axonal and vascular injury are nearly universal consequences of mechanical energy impacting the head and contribute to disability throughout the injury severity spectrum. CHIMERA (Closed Head Impact Model of Engineered Rotational Acceleration) is a non-surgical, impact-acceleration model of rodent TBI that reliably produces diffuse axonal injury characterized by white matter gliosis and axonal damage. ⋯ Memory deficits were evident at 30 d and resolved by 60 d. Intriguingly, white matter injury was not remarkable at acute time points but evolved over time, with white matter gliosis being most extensive at 60 d. Interface-assisted CHIMERA thus enables experimental modeling of distinct endophenotypes of TBI that include acute vascular and grey matter injury in addition to chronic evolution of white matter damage, similar to the natural history of human TBI.
-
Experimental neurology · Feb 2020
ReviewPathogenesis of paclitaxel-induced peripheral neuropathy: A current review of in vitro and in vivo findings using rodent and human model systems.
Paclitaxel (Brand name Taxol) is widely used in the treatment of common cancers like breast, ovarian and lung cancer. Although highly effective in blocking tumor progression, paclitaxel also causes peripheral neuropathy as a side effect in 60-70% of chemotherapy patients. Recent efforts by numerous labs have aimed at defining the underlying mechanisms of paclitaxel-induced peripheral neuropathy (PIPN). ⋯ These diverse changes may be secondary to paclitaxel-induced microtubule transport impairment. Human genetic studies, although still limited, also highlight the involvement of cytoskeletal changes in PIPN. Newly identified molecular targets resulting from these studies could provide the basis for the development of therapies with which to either prevent or reverse paclitaxel-induced peripheral neuropathy in chemotherapy patients.