Experimental neurology
-
Experimental neurology · Jul 2020
Low-pressure fluid percussion minimally adds to the sham craniectomy-induced neurobehavioral changes: Implication for experimental traumatic brain injury model.
Modeling experimental traumatic brain injury (TBI) in rodents is necessarily required to understand the pathophysiological and neurobehavioral consequences of neurotrauma. Numerous models have been developed to study experimental TBI. Fluid percussion injury (FPI) is the most extensively used model to represent clinical phenotypes. ⋯ Our results indicate that sham craniectomy itself is enough to cause TBI like characteristics, and thus fluid percussion at mild pressure is minimally additive with craniectomy. Considering the method as a mixed (focal & diffused) injury model, the 'net neurotrauma severity' should be compared with naïve control instead of the sham as it is an outcome of cumulative damage due to fluid pressure and craniectomy. Nevertheless, to understand the long term consequences of neurotrauma, the extent of recovery in surgical sham may separately be quantified.