Experimental neurology
-
Experimental neurology · Sep 1998
Nerve growth factor (NGF) and diabetic neuropathy in the rat: morphological investigations of the sural nerve, dorsal root ganglion, and spinal cord.
A number of functions for nerve growth factor (NGF) have been described over the past years, including its role for neuronal function and regeneration during toxic or metabolic neuropathies. In order to further assess the effects of NGF on the somatosensory system in diabetic neuropathy, the sural nerve, dorsal root ganglia (DRG), and dorsal horn of the spinal cord were investigated by morphological and quantitative methods in rats after 12 weeks of uncontrolled streptozotocin-induced diabetes mellitus. The results from our study suggest a twofold effect of NGF: (1) In sural nerve treatment with NGF (0.1 or 0.5 mg/kg) for 12 weeks was able to reverse distinct diabetes-related alterations in myelinated nerve fiber morphology, such as myelin thickness. ⋯ No change of trkA receptor immunostaining was seen in DRGs of diabetic rats; however, a reduction of trkA immunoreactivity of DRG neurons was noted after long-term NGF treatment of healthy controls. The data demonstrate that NGF regulates a number of neuronal parameters along peripheral and central parts of the somatosensory pathway in the adult. This neurotrophic support may be essential for inducing functionally significant regenerative mechanisms in diabetic neuropathy.
-
Experimental neurology · Aug 1998
Comparative StudyDifferences in sympathetic innervation of mouse DRG following proximal or distal nerve lesions.
Nerve injury leads to novel sympathetic innervation of the dorsal root ganglion (DRG). We have hypothesized previously that the degenerating nerve increases the sympathetic sprouting in the DRG and pain after chronic sciatic constriction injury (CCI) by virtue of its influence on sensory and sympathetic axons spared by the injury. However, L5 spinal nerve ligation and transection (SNL) results in the complete isolation of the L5 DRG from the degenerating stump, yet sympathetic axons invade the ganglion, and sympathetically dependent pain develops. ⋯ Observation of the origins of the invading sympathetic axons revealed that after CCI, sympathetics innervating blood vessels and dura (probably intact) sprouted into the ganglion, but after SNL sympathetics (probably axotomized) invaded from the injured spinal nerve. Based on these findings, we hypothesize that there are two mechanisms for sympathetic sprouting into DRG, differentially dependent on Wallerian degeneration. Analysis of pain behavior in these animals reveals that (i) mechanoallodynia and sympathetic innervation of the DRG tend to coincide and (ii) thermal allodynia and Wallerian degeneration, but not sympathetic innervation of the DRG tend to coincide.
-
Experimental neurology · Jul 1998
Chronic effects of traumatic brain injury on hippocampal vesicular acetylcholine transporter and M2 muscarinic receptor protein in rats.
Experimental traumatic brain injury (TBI) produces cholinergic neurotransmission deficits that may contribute to chronic spatial memory deficits. Cholinergic neurotransmission deficits may be due to presynaptic alterations in the storage and release of acetylcholine (ACh) or from changes in the receptors for ACh. The vesicular ACh transporter (VAChT) mediates accumulation of ACh into secretory vesicles, and M2 receptors can modulate cholinergic neurotransmission via a presynaptic inhibitory feedback mechanism. ⋯ At 2 and 4 weeks postinjury, an increase in hippocampal VAChT protein and a corresponding loss of hippocampal M2 protein was observed compared to sham controls. Consistent with these results, Western blot analyses at 4 weeks postinjury demonstrated a 40-50% increase in VAChT and a 25-30% decrease in M2. These changes may represent a compensatory response of cholinergic neurons to increase the efficiency of ACh neurotransmission chronically after TBI, by upregulating the storage capacity and subsequent release of ACh and downregulating presynaptic inhibitory receptors.
-
Experimental neurology · Jul 1998
Motoneuron survival after neonatal peroneal nerve injury in the rat-evidence for the sparing effect of reciprocal inhibition.
Sciatic nerve crush at birth results in the death of most of the motoneurons in the sciatic motor pool. It has been proposed that these cells die through excessive activation which can be explained partly by an increased susceptibility to NMDA. However, it is also possible that decreased inhibitory mechanisms resulting from nerve injury may contribute to overactivation of the motoneurons. ⋯ A control experiment excluded the possible involvement of increased stretch of the muscles as a result of common peroneal nerve crush alone as an explanation for the improvement. We therefore suggest that the increased survival of motoneurons after peroneal nerve crush was due to the preservation of their reciprocal inhibitory input. However, since even with this improvement the majority of motoneurons still died, loss of reciprocal inhibition probably does not play a major role in the death of motoneurons induced by overactivation.
-
Experimental neurology · Jun 1998
Impairment of basal forebrain cholinergic neurons associated with aging and long-term loss of ovarian function.
Recent studies suggest that women are at greater risk for Alzheimer's disease than men and that estrogen replacement can help to reduce the risk and severity of Alzheimer's-related dementia in postmenopausal women. We have hypothesized that the increased risk for Alzheimer's-related dementia is due, in part, to the loss of ovarian function in postmenopausal women and to the effects that decreased levels of ovarian hormones have on basal forebrain cholinergic function. In the present study, the effects of aging and ovariectomy on cholinergic neurons in the rat basal forebrain were examined to determine (1) whether aging differentially affects cholinergic neurons in the basal forebrain of males vs females, and (2) whether long-term loss of ovarian function produces deficits in basal forebrain cholinergic function beyond those associated with aging and sex. ⋯ This, in turn, may increase the susceptibility of the cholinergic neurons to the effects of aging and disease and thereby contribute to basal forebrain cholinergic decline. We conclude that long-term loss of ovarian function combined with aging has a negative impact on basal forebrain cholinergic neurons. These effects may contribute to the risk and severity of cognitive decline associated with aging and Alzheimer's disease in postmenopausal women.