Experimental neurology
-
Experimental neurology · Feb 2020
ReviewPathogenesis of paclitaxel-induced peripheral neuropathy: A current review of in vitro and in vivo findings using rodent and human model systems.
Paclitaxel (Brand name Taxol) is widely used in the treatment of common cancers like breast, ovarian and lung cancer. Although highly effective in blocking tumor progression, paclitaxel also causes peripheral neuropathy as a side effect in 60-70% of chemotherapy patients. Recent efforts by numerous labs have aimed at defining the underlying mechanisms of paclitaxel-induced peripheral neuropathy (PIPN). ⋯ These diverse changes may be secondary to paclitaxel-induced microtubule transport impairment. Human genetic studies, although still limited, also highlight the involvement of cytoskeletal changes in PIPN. Newly identified molecular targets resulting from these studies could provide the basis for the development of therapies with which to either prevent or reverse paclitaxel-induced peripheral neuropathy in chemotherapy patients.
-
Experimental neurology · Jan 2020
ReviewNeural-respiratory inflammasome axis in traumatic brain injury.
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality. Approximately 20-25% of TBI subjects develop Acute Lung Injury (ALI), but the pathomechanisms of TBI-induced ALI remain poorly defined. Currently, mechanical ventilation is the only therapeutic intervention for TBI-induced lung injury. ⋯ Here, we outline the role of the extracellular vesicle (EV)-mediated inflammasome signaling in the etiology of TBI-induced ALI. Furthermore, we evaluate the efficacy of a low molecular weight heparin (Enoxaparin, a blocker of EV uptake) and a monoclonal antibody against apoptosis speck-like staining protein containing a caspase recruitment domain (anti-ASC) as therapeutics for TBI-induced lung injury. We demonstate that activation of an EV-mediated Neural-Respiratory Inflammasome Axis plays an essential role in TBI-induced lung injury and disruption of this axis has therapeutic potential as a treatment strategy.
-
Experimental neurology · Jan 2020
Paradoxical effects of continuous high dose gabapentin treatment on autonomic dysreflexia after complete spinal cord injury.
Spinal cord injury (SCI) can have profound effects on the autonomic and cardiovascular systems, notably with injuries above high-thoracic levels that result in the development of autonomic dysreflexia (AD) characterized by volatile hypertension in response to exaggerated sympathetic reflexes triggered by afferent stimulation below the injury level. Pathophysiological changes associated with the development of AD include sprouting of both nociceptive afferents and ascending propriospinal 'relay' neurons below the injury, as well as dynamic changes in synaptic inputs onto sympathetic preganglionic neurons. However, it remains uncertain whether synapse formation between sprouted c-fibers and propriospinal neurons contributes to the development of exaggerated sympathetic reflexes produced during AD. ⋯ While there were significant decreases in the densities of excitatory and inhibitory pre-synaptic markers in the lumbosacral dorsal horn following injury alone, they were unaltered by continuous GBP treatment. This indicates distinct mechanisms of action for acute GBP to mitigate induced AD whereas chronic GBP increases non-induced AD frequencies. While high dose prophylactic GBP is not recommended to treat AD, acute low dose GBP may hold therapeutic value to mitigate evoked AD, notably during iatrogenic procedures under controlled clinical conditions.
-
Experimental neurology · Dec 2019
Neuroimmunological characterization of a mouse model of primary progressive experimental autoimmune encephalomyelitis and effects of immunosuppressive or neuroprotective strategies on disease evolution.
Progressive multiple sclerosis (PMS) is a devastating disorder sustained by neuroimmune interactions still wait to be identified. Recently, immune-independent, neural bioenergetic derangements have been hypothesized as causative of neurodegeneration in PMS patients. To gather information on the immune and neurodegenerative components during PMS, in the present study we investigated the molecular and cellular events occurring in a Non-obese diabetic (NOD) mouse model of experimental autoimmune encephalomyelitis (EAE). ⋯ However, the mitochondria boosting drugs, bezafibrate and biotin, were unable to reduce disability progression. Data suggest that EAE NOD mice recapitulate some features of PMS. Also, by showing that bezafibrate or biotin do not affect progression in NOD mice, our study suggests that this model can be harnessed to anticipate experimental information of relevance to innovative treatments of PMS.
-
Experimental neurology · Nov 2019
Sarm1 deletion reduces axon damage, demyelination, and white matter atrophy after experimental traumatic brain injury.
Traumatic brain injury (TBI) often damages axons in white matter tracts and causes corpus callosum (CC) atrophy in chronic TBI patients. Injured axons encounter irreversible damage if transected, or alternatively may maintain continuity and subsequently either recover or degenerate. Secondary mechanisms can cause further axon damage, myelin pathology, and neuroinflammation. ⋯ Both effects were attenuated in Thy1-YFP/Sarm1-/- mice. Surprisingly, Thy1-YFP/Sarm1-/- mice had increased CC astrogliosis. This study demonstrates that Sarm1 inactivation reduces demyelination, and white matter atrophy after TBI, while the post-injury stage impacts when axon protection is effective.