Experimental neurology
-
Experimental neurology · Jul 2019
Impairment of pericyte-endothelium crosstalk leads to blood-brain barrier dysfunction following traumatic brain injury.
The blood-brain barrier (BBB) constitutes a neurovascular unit formed by microvascular endothelial cells, pericytes, and astrocytes. Brain pericytes are important regulators of BBB integrity, permeability, and blood flow. Pericyte loss has been implicated in injury; however, how the crosstalk among pericytes, endothelial cells, and astrocytes ultimately leads to BBB dysfunction in traumatic brain injury (TBI) remains elusive. ⋯ Similarly, pericyte-endothelium integrity impairment in FPI animals greatly increases the permeability of small-molecular-weight sodium fluorescein and high-molecular-weight-tracer Evans blue across the BBB. In addition, the injury-inflicted animals show significantly higher levels of S100β and NSE in the blood samples compared with controls. In conclusion, our data provide an insight that brain trauma causes an early impairment of pericyte-endothelium integrity and results in BBB dysregulation that initiates pathological consequences associated with TBI.
-
Experimental neurology · Jul 2019
ReviewTranslational approach towards determining the role of cerebral autoregulation in outcome after traumatic brain injury.
Cerebral autoregulation is impaired after traumatic brain injury (TBI), contributing to poor outcome. In the context of the neurovascular unit, cerebral autoregulation contributes to neuronal cell integrity and clinically Glasgow Coma Scale is correlated to intactness of autoregulation after TBI. Cerebral Perfusion Pressure (CPP) is often normalized by use of vasoactive agents to increase mean arterial pressure (MAP) and thereby limit impairment of cerebral autoregulation and neurological deficits. ⋯ This review will describe translational studies using a more human like animal model (the pig) of TBI to identify better therapeutic strategies to improve outcome post injury. These studies also investigated the role of age and sex in outcome and mechanism(s) involved in improvement of outcome in the setting of TBI. Additionally, this review considers use of inhaled nitric oxide as a novel neuroprotective strategy in treatment of TBI.
-
Experimental neurology · Jul 2019
Upregulation of interleukin-6 on Cav3.2 T-type calcium channels in dorsal root ganglion neurons contributes to neuropathic pain in rats with spinal nerve ligation.
The T-type calcium channels Cav3.2, one of the low voltage-activated (LVA) calcium channels, have been found to play important roles in the neuronal excitability. Recently, we and others have demonstrated that accumulation of Cav3.2 channels in the dorsal root ganglion (DRG) neurons and sensory nerves contributes to neuropathic pain after peripheral nerve injury. In the present study, we aimed to further investigate the regulation of Cav3.2 channels by interleukin-6 (IL-6) in DRG neurons in neuropathic pain rats after spinal nerve ligation (SNL). ⋯ Furthermore, inhibition of IL-6 trans-signaling reduced the upregulation of Cav3.2 T-type channel induced by FIL-6 (a fusion protein of IL-6 and sIL-6R) in primary cultured DRG neurons in vitro. In vivo, inhibition of IL-6 trans-signaling reversed the upregulation of Cav3.2, reduced the hyperexcitability of L5 DRG neurons and alleviated mechanical allodynia in SNL rats. Our results suggest that IL-6 upregulates Cav3.2 T-type channels expression and function through the IL-6/sIL-6R trans-signaling pathway in DRG neurons, thus contributes to the development of neuropathic pain in SNL rats.
-
Experimental neurology · Jul 2019
Efgartigimod improves muscle weakness in a mouse model for muscle-specific kinase myasthenia gravis.
Myasthenia gravis is hallmarked by fatigable muscle weakness resulting from neuromuscular synapse dysfunction caused by IgG autoantibodies. The variant with muscle-specific kinase (MuSK) autoantibodies is characterized by prominent cranial and bulbar weakness and a high frequency of respiratory crises. The majority of MuSK MG patients requires long-term immunosuppressive treatment, but the result of these treatments is considered less satisfactory than in MG with acetylcholine receptor antibodies. ⋯ These substantial in vivo improvements of efgartigimod-treated MuSK MG mice following a limited drug exposure period were paralleled by a tendency of recovery at neuromuscular synaptic level (in various muscles), as demonstrated by ex vivo functional studies. These synaptic improvements may well become more explicit upon longer drug exposure. In conclusion, our study shows that efgartigimod has clear therapeutic potential in MuSK myasthenia gravis and forms an exciting candidate drug for many autoantibody-mediated neurological and other disorders.
-
Experimental neurology · Jul 2019
Neuroprotective effects of inter-alpha inhibitor proteins after hypoxic-ischemic brain injury in neonatal rats.
Hypoxic-ischemic (HI) brain injury is one of the most common neurological problems occurring in the perinatal period. Hypothermia is the only approved intervention for neonatal HI encephalopathy. However, this treatment is only partially protective, has a narrow therapeutic time window after birth and only can be used to treat full-term infants. ⋯ Delayed treatment with IAIPs 6 h after HI did not improve histopathological brain injury in males or females, but resulted in higher (P < 0.050) brain weights compared with the placebo-treated HI males. Therefore, treatment with IAIPs immediately after HI improved brain weights and reduced neuropathological brain injury and cell death in male rats, and reduced infarct volume in both male and female neonatal rats. We conclude that IAIPs exert neuroprotective effects after exposure to HI in neonatal rats and may exhibit some sex-related differential effects.