Journal of receptor and signal transduction research
-
J. Recept. Signal Transduct. Res. · Jan 2015
Spinorphin inhibits membrane depolarization- and capsaicin-induced intracellular calcium signals in rat primary nociceptive dorsal root ganglion neurons in culture.
Spinorphin is a potential endogenous antinociceptive agent although the mechanism(s) of its analgesic effect remain unknown. We conducted this study to investigate, by considering intracellular calcium concentrations as a key signal for nociceptive transmission, the effects of spinorphin on cytoplasmic Ca(2+) ([Ca(2+)]i) transients, evoked by high-K(+) (30 mM) depolariasation or capsaicin, and to determine whether there were any differences in the effects of spinorphin among subpopulation of cultured rat dorsal root ganglion (DRG) neurons. ⋯ Results from this study indicates that spinorphin significantly inhibits [Ca(2+)]i signaling, which are key for the modulation of cell membrane excitability and neurotransmitter release, preferably in nociceptive subtypes of this primary sensory neurons suggesting that peripheral site is involved in the pain modulating effect of this endogenous agent.