Investigative radiology
-
Investigative radiology · Dec 2013
ReviewCurrent technological advances in magnetic resonance with critical impact for clinical diagnosis and therapy.
The last 5 years of technological advances with major impact on clinical magnetic resonance (MR) are discussed, with greater emphasis on those that are most recent. These developments have already had a critical positive effect on clinical diagnosis and therapy and presage continued rapid improvements for the next 5 years. This review begins with a discussion of 2 topics that encompass the breadth of MR, in terms of anatomic applications, contrast media, and MR angiography. ⋯ Interventional MR is still early in its development, although well established in many centers, possessing great potential in comparison with computed tomography (CT) because of superior soft-tissue contrast, real-time multiplanar imaging guidance and monitoring, the availability of temperature mapping, and the lack of ionizing radiation. And last but not least, MR-PET is in its infancy, with the first round of clinical units installed in the past 2 years and early clinical experience showing equivalence and, in some instances, superiority to PET-CT. As with the field of MR itself, which began when CT was already an established modality, MR-PET will likely, in the next decade, become an equivalent modality to PET-CT, if not begin to supplant the latter modality.
-
Investigative radiology · Dec 2013
Quantification of thoracic blood flow using volumetric magnetic resonance imaging with radial velocity encoding: in vivo validation.
The objective of this study was to validate radially undersampled 5-point velocity-encoded time-resolved flow-sensitive magnetic resonance imaging (MRI) ("PC-VIPR", phase contrast vastly undersampled imaging with isotropic resolution projection reconstruction magnetic resonance) for the quantification of ascending aortic (AAO) and main pulmonary artery (MPA) flow in vivo. ⋯ Accurate quantification of AAO and MPA flows with radially undersampled 4D flow MRI applying 5-point velocity encoding is achievable when phantom correction is used.
-
Investigative radiology · Dec 2013
T2 relaxation time and apparent diffusion coefficient for noninvasive assessment of renal pathology after acute kidney injury in mice: comparison with histopathology.
Renal ischemia reperfusion injury leads to acute kidney injury (AKI) and is associated with tissue edema, inflammatory cell infiltration, and subsequent development of interstitial renal fibrosis and tubular atrophy. The purpose of this study was to investigate the value of the functional magnetic resonance imaging (MRI) techniques, T2 mapping, and diffusion-weighted imaging (DWI) in characterizing acute and chronic pathology after unilateral AKI in mice. ⋯ Measuring T2 and ADC values through MRI is a noninvasive way to determine the presence and severity of acute and chronic renal changes after AKI in mice. Thus, the method should prove useful in animal and human clinical studies.