Investigative radiology
-
Investigative radiology · Jan 2014
Comparative StudyComparative study between mobile computed radiography and mobile flat-panel radiography for bedside chest radiography: impact of an antiscatter grid on the visibility of selected diagnostically relevant structures.
The objective of this study was to evaluate the diagnostic performance of 2 different imaging systems in adult bedside chest radiography and the impact on the visibility of selected diagnostically relevant structures in the images acquired with these systems, with and without an antiscatter grid. ⋯ The use of an antiscatter grid significantly improved the image quality of bedside DR radiographs. A similar effect was seen with CR radiographs but only for lung parenchyma, soft tissue, and the overall image quality. Mobile DR outperformed CR in all structures.
-
Investigative radiology · Jan 2014
Comparative StudyEvaluation of neuroendocrine liver metastases: a comparison of dynamic contrast-enhanced magnetic resonance imaging and positron emission tomography/computed tomography.
The objective of this study was to evaluate the correlation between dynamic gadoxetic acid-enhanced magnetic resonance imaging parameters and specific uptake values (SUVs) derived from ¹⁸fluorodeoxyglucose (¹⁸F-FDG) and ⁶⁸Ga-DOTA-Tyr(3)-octreotate (⁶⁸Ga-DOTATATE) positron emission tomography/computed tomography (PET/CT) in patients with liver metastases of neuroendocrine neoplasms. ⋯ Both ⁶⁸Ga-DOTATATE and ¹⁸fluorodeoxyglucose PET/CT partially correlate with MRI perfusion parameters from the dual-inlet, 2-compartment uptake model. The results indicate that the paired imaging methods deliver complementary functional information.
-
Investigative radiology · Jan 2014
Assessing lung transplantation ischemia-reperfusion injury by microcomputed tomography and ultrashort echo-time magnetic resonance imaging in a mouse model.
Ischemia-reperfusion injury (I/R) is a common early complication after lung transplantation. The purpose of this study was to compare ultrashort echo-time (UTE) sequences in magnetic resonance imaging (MRI) with a microcomputed tomography (micro-CT) reference standard for detection of I/R injury in a lung transplantation mouse model. ⋯ Results show that MRI of the lung has a similar diagnostic power compared with that of micro-CT regarding the detection of I/R injury after experimental lung transplantation. Both modalities provide complementary information in the assessment of dense and slight infiltration in the early phase after lung transplantation. Therefore, UTE MRI seems to be a promising addition to computed tomographic imaging in the assessment of I/R injury after lung transplantation.