Investigative radiology
-
Investigative radiology · Dec 2013
T2 relaxation time and apparent diffusion coefficient for noninvasive assessment of renal pathology after acute kidney injury in mice: comparison with histopathology.
Renal ischemia reperfusion injury leads to acute kidney injury (AKI) and is associated with tissue edema, inflammatory cell infiltration, and subsequent development of interstitial renal fibrosis and tubular atrophy. The purpose of this study was to investigate the value of the functional magnetic resonance imaging (MRI) techniques, T2 mapping, and diffusion-weighted imaging (DWI) in characterizing acute and chronic pathology after unilateral AKI in mice. ⋯ Measuring T2 and ADC values through MRI is a noninvasive way to determine the presence and severity of acute and chronic renal changes after AKI in mice. Thus, the method should prove useful in animal and human clinical studies.
-
Investigative radiology · Nov 2013
Effect of delayed transit time on arterial spin labeling: correlation with dynamic susceptibility contrast perfusion magnetic resonance in moyamoya disease.
Because arterial spin labeling (ASL) is completely noninvasive and provides absolute cerebral blood flow (CBF) information within a brief period, the technique has been increasingly used for patients with acute or chronic cerebrovascular disease. However, the effect of delayed transit time on ASL can generate errors in the quantitative estimation of CBF using ASL. Furthermore, in the clinical setting, in which transit time is uncertain, the variability of the transit time in patients reduces the validity of CBF on ASL images. Therefore, we evaluated the effect of delayed transit time on ASL images compared with dynamic susceptibility contrast (DSC) perfusion magnetic resonance (MR) in patients with moyamoya disease. ⋯ Our results demonstrate that the correlation between the CBF values from the ASL and DSC tends to be weaker when the transit time is more delayed, with the restoration of the strength of the correlation when the TTP is extremely delayed (>25 seconds). Understanding the effect of delayed transit time on the CBF from ASL perfusion MR in a clinical setting would facilitate the proper interpretation of ASL images.
-
Investigative radiology · Nov 2013
Quantitative evaluation of computed high B value diffusion-weighted magnetic resonance imaging of the prostate.
Computed diffusion-weighted magnetic resonance imaging (cDWI) refers to the synthesizing of arbitrary b value diffusion-weighted images (DWI) from a set of measured b value images by voxelwise fitting. The objectives of this study were to quantitatively analyze the noise and the contrast-to-noise ratio (CNR) in cDWI as a function of b value by numerical simulations and by measurements in patients with prostate cancer and to compare cDWI to directly measured DWI at a b value of 1400 s/mm2. ⋯ The CNR eff between tumor-suspicious and normal-appearing prostate tissue in DWI images at a b value of 1400 s/mm2 is comparable in cDWI and directly measured DWI. Computed DWI at even higher b values, calculated from measured images with b values between 0 and 800 s/mm2, yields higher CNR eff than measured DWI, which may be of clinical aid in the management of prostate cancer.
-
Investigative radiology · Oct 2013
Comparative StudyDetermination of malignancy and characterization of hepatic tumor type with diffusion-weighted magnetic resonance imaging: comparison of apparent diffusion coefficient and intravoxel incoherent motion-derived measurements.
The objective of this study was to compare the value of the apparent diffusion coefficient (ADC) determined with 3 b values and the intravoxel incoherent motion (IVIM)-derived parameters in the determination of malignancy and characterization of hepatic tumor type. ⋯ Compared with the ADC, the diffusion parameters derived from the IVIM model did not improve the determination of malignancy and characterization of hepatic tumor type.
-
Investigative radiology · Sep 2013
Optimization of dual-energy xenon-computed tomography for quantitative assessment of regional pulmonary ventilation.
Dual-energy x-ray computed tomography (DECT) offers visualization of the airways and quantitation of regional pulmonary ventilation using a single breath of inhaled xenon gas. In this study, we sought to optimize scanning protocols for DECT xenon gas ventilation imaging of the airways and lung parenchyma and to characterize the quantitative nature of the developed protocols through a series of test-object and animal studies. ⋯ To provide a truly quantitative measure of regional lung function with xenon-DECT, the basic protocols and parameter calibrations need to be better understood and quantified. It is critically important to understand the fundamentals of new techniques to allow for proper implementation and interpretation of their results before widespread usage. With the use of an in-house derived xenon calibration curve for 3-material decomposition rather than the scanner supplied calibration and a xenon/helium/oxygen mixture, we demonstrate highly accurate quantitation of xenon gas volumes and avoid gravitational effects on gas distribution. This study provides a foundation for other researchers to use and test these methods with the goal of clinical translation.