Journal of cardiovascular pharmacology and therapeutics
-
J. Cardiovasc. Pharmacol. Ther. · Mar 2015
ReviewProprotein convertase subtilisin/kexin 9 inhibitors: an emerging lipid-lowering therapy?
Proprotein convertase subtilisin/kexin 9 (PCSK9) is part of the proteinase K subfamily of subtilases and plays a key role in lipid metabolism. It increases degradation of the low-density lipoprotein receptor (LDL-R), modulates cholesterol metabolism and transport, and contributes to the production of apolipoprotein B (apoB) in intestinal cells. Exogenous PCSK9 modifies the activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and acyl coenzyme A:cholesterol acyltransferase and enhances secretion of chylomicrons by modulating production of lipids and apoB-48. ⋯ Therefore, the inhibition of PCSK9 in combination with statins provides a promising approach for lowering low-density lipoprotein cholesterol (LDL-C) concentrations. This review will address new therapeutic strategies targeting PCSK9, including monoclonal antibodies, antisense oligonucleotides, small interfering RNAs, and other small molecule inhibitors. Further studies are still needed to determine the efficacy and safety of the PCSK9 inhibitors not only to decrease LDL-C but also to investigate the potential underlying mechanisms involved and to test whether these compounds actually reduce cardiovascular end points and mortality.
-
J. Cardiovasc. Pharmacol. Ther. · Mar 2015
Heart remodeling and ischemia-reperfusion arrhythmias linked to myocardial vitamin d receptors deficiency in obstructive nephropathy are reversed by paricalcitol.
Cardiovascular disease is often associated with chronic kidney disease and vice versa; myocardial vitamin D receptors (VDRs) are among the probable links between the 2 disorders. The vitamin D receptor activator paricalcitol protects against some renal and cardiovascular complications. However, the structural and electrophysiological effects of myocardial vitamin D receptor modification and its impact on the response to ischemia-reperfusion are currently unknown. ⋯ In 8 additional hearts per group, we found that obstructed rats showed a higher incidence of ventricular fibrillation during reperfusion (after 10 minutes of regional ischemia) than did those treated with paricalcitol. The action potential duration was prolonged throughout the experiment in paricalcitol-treated rats. We conclude that the reduction in myocardial vitamin D receptor expression in obstructed rats might be related to myocardial remodeling associated with an increase in arrhythmogenesis and that paricalcitol protects against these changes by restoring myocardial vitamin D receptor levels and prolonging action potentials.