Journal of cardiovascular pharmacology and therapeutics
-
J. Cardiovasc. Pharmacol. Ther. · May 2015
Carbon monoxide-releasing molecules attenuate postresuscitation myocardial injury and protect cardiac mitochondrial function by reducing the production of mitochondrial reactive oxygen species in a rat model of cardiac arrest.
The objective of this study is to examine whether carbon monoxide-releasing molecules (CORMs) can decrease the generation of excessive reactive oxygen species (ROS) in cardiac mitochondria, thereby protecting against postresuscitation myocardial injury and cardiac mitochondrial dysfunction after resuscitation in a rat model of ventricular fibrillation (VF), and further investigated the underlying mechanism. Rats suffered 8 minutes of untreated VF and resuscitation and were randomized into the control group with vehicle infusion and the CORM group with CO-releasing molecule 2 (CORM2) treatment. Animals in the Sham group were instrumented without induced VF and resuscitation. ⋯ In contrast, high concentrations of CORM2 (60 μmol/L) resulted in the reverse effect presumably due to its excessive uncoupling action. These findings suggest that CORM2 attenuates oxidative stress of the heart and improves cardiac function after resuscitation. The mechanism was probably that CO, the product of CORM2, reduces the production of cardiac mitochondrial ROS and thereby attenuates mitochondrial injury and dysfunction during the postresuscitation period, due to the transient uncoupling of mitochondrial respiration.
-
J. Cardiovasc. Pharmacol. Ther. · Mar 2015
ReviewProprotein convertase subtilisin/kexin 9 inhibitors: an emerging lipid-lowering therapy?
Proprotein convertase subtilisin/kexin 9 (PCSK9) is part of the proteinase K subfamily of subtilases and plays a key role in lipid metabolism. It increases degradation of the low-density lipoprotein receptor (LDL-R), modulates cholesterol metabolism and transport, and contributes to the production of apolipoprotein B (apoB) in intestinal cells. Exogenous PCSK9 modifies the activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and acyl coenzyme A:cholesterol acyltransferase and enhances secretion of chylomicrons by modulating production of lipids and apoB-48. ⋯ Therefore, the inhibition of PCSK9 in combination with statins provides a promising approach for lowering low-density lipoprotein cholesterol (LDL-C) concentrations. This review will address new therapeutic strategies targeting PCSK9, including monoclonal antibodies, antisense oligonucleotides, small interfering RNAs, and other small molecule inhibitors. Further studies are still needed to determine the efficacy and safety of the PCSK9 inhibitors not only to decrease LDL-C but also to investigate the potential underlying mechanisms involved and to test whether these compounds actually reduce cardiovascular end points and mortality.
-
J. Cardiovasc. Pharmacol. Ther. · Mar 2015
Heart remodeling and ischemia-reperfusion arrhythmias linked to myocardial vitamin d receptors deficiency in obstructive nephropathy are reversed by paricalcitol.
Cardiovascular disease is often associated with chronic kidney disease and vice versa; myocardial vitamin D receptors (VDRs) are among the probable links between the 2 disorders. The vitamin D receptor activator paricalcitol protects against some renal and cardiovascular complications. However, the structural and electrophysiological effects of myocardial vitamin D receptor modification and its impact on the response to ischemia-reperfusion are currently unknown. ⋯ In 8 additional hearts per group, we found that obstructed rats showed a higher incidence of ventricular fibrillation during reperfusion (after 10 minutes of regional ischemia) than did those treated with paricalcitol. The action potential duration was prolonged throughout the experiment in paricalcitol-treated rats. We conclude that the reduction in myocardial vitamin D receptor expression in obstructed rats might be related to myocardial remodeling associated with an increase in arrhythmogenesis and that paricalcitol protects against these changes by restoring myocardial vitamin D receptor levels and prolonging action potentials.
-
J. Cardiovasc. Pharmacol. Ther. · Jan 2015
ReviewUse of erythropoiesis-stimulating agents in the treatment of anemia in patients with systolic heart failure.
To determine the efficacy and safety of erythropoiesis-stimulating agents (ESAs) for the treatment of anemia in patients with systolic heart failure. ⋯ There is inconclusive evidence to suggest that the use of ESAs in treating anemia in patients with heart failure is beneficial. Although ESAs demonstrated a clear ability for increasing hemoglobin levels, the data regarding clinical outcomes such as exercise parameters, quality of life, and hospitalizations are conflicting. In addition, a mortality benefit has not been shown; therefore, the potential for improved symptomatology must be weighed against the potential for adverse events.
-
J. Cardiovasc. Pharmacol. Ther. · Nov 2014
Randomized Controlled Trial Multicenter StudyLipids, safety parameters, and drug concentrations after an additional 2 years of treatment with anacetrapib in the DEFINE study.
Anacetrapib is a cholesteryl ester transfer protein (CETP) inhibitor that has previously been shown to reduce low-density lipoprotein cholesterol (LDL-C) and raise high-density lipoprotein cholesterol (HDL-C) in patients with or at high risk of coronary heart disease in the 76-week, placebo-controlled, Determining the Efficacy and Tolerability of CETP Inhibition with Anacetrapib (DEFINE) trial. Here, we report the results of the 2-year extension to the DEFINE study where patients (n = 803) continued on the same assigned treatment as in the original 76-week study. Treatment with anacetrapib during the 2-year extension was well tolerated with a safety profile similar to patients on placebo. ⋯ The apparent steady state mean plasma trough concentration of anacetrapib was ∼640 nmol/L. Geometric mean plasma concentrations of anacetrapib did not appear to increase beyond week 40 of the 2-year extension of the 76-week DEFINE base study. In conclusion, an additional 2 years of treatment with anacetrapib were well tolerated with durable lipid-modifying effects on LDL-C and HDL-C.