Neuropathology : official journal of the Japanese Society of Neuropathology
-
Growing evidence documents oxidative stress involvement in ALS. We previously demonstrated accumulation of a protein-bound form of the highly toxic lipid peroxidation product crotonaldehyde (CRA) in the spinal cord of sporadic ALS patients. In the present study, to the determine the role for CRA in the disease processes of superoxide dismutase-1 (SOD1) mutation-associated familial ALS (FALS), we performed immunohistochemical and semi-quantitative cell count analyses of protein-bound CRA (P-CRA) in the spinal cord of SOD1-mutated FALS and its transgenic mouse model. ⋯ In the transgenic mice, P-CRA immunoreactivity was localized in only a few ventral horn glia in the presymptomatic stage, in almost all of the vacuolated motor neurons and cordlike swollen axons and some of the ventral horn reactive astrocytes and microglia in the onset stage, and in many of the ventral horn reactive astrocytes and microglia in the advanced stage. Cell count analysis on mouse spinal cord sections disclosed a statistically significant increase in the density of P-CRA-immunoreactive glia in the ventral horns of the young to old G93A mice compared to the age-matched control mice. The present results indicate that enhanced CRA formation occurs in motor neurons and reactive glia in the spinal cord of SOD1-mutated FALS and its transgenic mouse model as well as sporadic ALS, sug- gesting implications for CRA in the pathomechanism common to these forms of ALS.