Brain research
-
The conclusion that cyclic 3'-5 guanosine monophosphate (cGMP) functions in a 'permissive' manner in promoting cerebrovasodilation during hypercapnia was based on findings showing that the nitric oxide synthase (NOS) inhibitor-induced repression of the CO2 response could be reversed upon addition of exogenous cGMP. We hypothesized that the action of cGMP revealed in those studies does not define its normal role in hypercapnic cerebral vasodilation, but rather is a unique function of the artificial situation of NOS inhibition coupled with cGMP repletion. Thus, although CO2 reactivity may be the same in normal versus cGMP-repleted animals, the factors contributing to that response may differ. ⋯ These findings confirmed that nNOS-derived NO is critically important to the hypercapnic reactivity of cerebral arterioles, and that cGMP repletion, following NOS inhibition, could restore CO2 reactivity. The observation that KCa and KATP channel blockade did not alter CO2 reactivity under baseline conditions, but attenuated CO2 reactivity only in the presence nNOS inhibition (and cGMP repletion), suggests that multiple, redundant, and interactive mechanisms participate in CO2-induced vasodilation. These results also imply that current strategies for revealing permissive actions of cGMP (or NO) may need to be re-evaluated.
-
The present study examined the effects of CP-98,113, an N-methyl-d-aspartate (NMDA) receptor blocker, on cardiovascular variables, neurobehavioral motor function, spatial memory deficits, and cerebral edema formation following lateral (parasagittal) fluid-percussion (FP) brain injury in the rat. In Study 1, we compared the cardiovascular effects of i.p. administration of CP-98, 113 at 15 min postinjury at doses of 1 mg/kg, 2 mg/kg, 5 mg/kg, or 20 mg/kg (n=8/dose). Animals receiving 1 mg/kg to 5 mg/kg CP-98,113 showed slight but nonsignificant decreases in blood pressure, while those receiving the highest dose (20 mg/kg) showed significant hypotension. ⋯ In Study 2, 15 min following lateral FP brain injury of moderate severity (2.5 atm), animals randomly received either CP-98,113 (5 mg/kg, i.p., n=23) followed by a 24-h subcutaneous infusion (1.5 mg kg-1 h-1) by means of a miniature osmotic pump, or identical volume of vehicle (n=24), and were evaluated for neurologic motor function (n=11/drug vs. 11/vehicle), memory function, and cerebral edema (n=12/drug vs. 13/vehicle). CP-98,113 (5 mg/kg) significantly attenuated neurologic motor dysfunction at 24 h (p<0.01) and 2 weeks (p<0.05) postinjury, reduced posttraumatic impairment in spatial memory observed at 48 h postinjury (p<0.001), and significantly reduced focal brain edema in the cortex adjacent to the site of maximal injury at 48 h postinjury (injury penumbra) (p<0.001). These results suggest that blockade of the NMDA receptor may attenuate the deleterious sequelae of traumatic brain injury.
-
The periaqueductal gray matter (PAG) serves as the midbrain link between forebrain emotional processing systems and motor pathways used in the defense reaction. Part of this response depends upon PAG efferent pathways that modulate cardiovascular-related sympathetic outflow systems, including those that regulate the heart. While it is known that the PAG projects to vagal preganglionic neurons, including possibly cardiovagal motoneurons, no information exists on the PAG circuits that may affect sympathetically mediated cardiac functions and, thus, the purpose of this study was to use neuroanatomical methods to identify these pathways. ⋯ Both serotonergic and non-serotonergic sympathetic premotor neurons in these two regions receive inputs from the PAG. Weak PAG projections to sympathetic premotor neurons were found in the rostral ventrolateral medulla (including to C1 adrenergic neurons), locus coeruleus, A5 cell group, paraventricular and lateral hypothalamic nuclei. In summary, both the lateral and ventrolateral PAG columns appear to be capable of modulating cardiac sympathetic functions via a series of indirect pathways involving sympathetic premotor neurons found in selected sites in the hypothalamus, midbrain, pons, and medulla oblongata, with the major outflow terminating in bulbospinal regions of the rostral ventromedial medulla.
-
Rats were kindled by repeated injections of pentylenetetrazole (PTZ; 37.5 mg/kg; i.p.) in the presence or absence of the opioid receptor antagonist naloxone. Naloxone (10 mg/kg; i.p.) applied 30 min before each PTZ application had no major effect on the seizure development, although a slight decrease in the seizure expression of fully kindled animals could be observed. In the kindled animals, a pronounced but transient increase in c-fos mRNA level was observed in several brain areas after the injection of PTZ. ⋯ Brosz, Naloxone ameliorates the learning deficit induced by pentylenetetrazole kindling in rats, Eur. J. Neurosci. 6 (1994) 1512-1515].
-
Intrathecal injection of a nitric oxide releasing compound, NOC-18, was used to define the role of nitric oxide (NO) in the spinal mechanism of neuropathic pain caused by unilateral chronic constriction injury to rat sciatic nerves. Paw withdrawal latency was used to evaluate nociception induced by thermal stimuli before surgery and afterwards at 1, 3, and 6 h, and on days 1, 2, 3, 4, 5, 8, and 12 after the nerve ligature. In the sham-surgery control groups, intrathecal injection of 10 or 100 microg of NOC-18 did not produce any change in withdrawal latencies. ⋯ The effects of intrathecal injection of MK-801, a N-methyl-D-aspartate (NMDA) receptor antagonist, N-nitro-L-arginine methyl ester (L-NAME), a NO synthase inhibitor, methylene blue (MB), a soluble guanylate cyclase inhibitor, and hemoglobin (Hb), a NO scavenger, on the development of thermal hyperalgesia after the sciatic nerve ligature were examined in the presence and absence of 1 and 10 microg of NOC-18. Acceleration of the development of thermal hyperalgesia induced by 1 and 10 microg NOC-18 was completely inhibited by Hb, but was not affected by either MK-801, L-NAME or MB. These findings indicate that NO plays an important role in the rapid development of thermal hyperalgesia after the nerve injury, but that facilitation of nociceptive processing in the spinal cord may entail an alternate to the NO-cyclic guanosine 3',5'-monophosphate (cGMP) pathway.