Brain research
-
Human handedness may be associated with asymmetry in the corticospinal motor system. Previous studies measuring the threshold for eliciting motor evoked potentials (MEPs) to transcranial magnetic stimulation (TMS) have provided evidence consistent with this hypothesis. However, TMS asymmetry observed in previous studies may have reflected cortical or spinal differences. ⋯ However, we observed that the number of scalp stimulation sites eliciting MEPs was statistically greater for APB and FCR muscles of the preferred limb. We found significant asymmetry between right-handed and left-handed subjects, such that in right-handers, the representation of the right APB was larger than that of the left APB, but in left-handers the representation of right APB was smaller than that of the left APB. These results suggest that handedness is associated with asymmetry in cortical motor representation.
-
We have demonstrated that pre-administered RB101 (40 mg/kg, i.v.), a mixed inhibitor of enkephalin-catabolizing enzymes, decreased spinal c-Fos expression induced 1 h and 30 min after intraplantar (i.pl.) carrageenin (41% reduction, p<0.01). These effects were completely blocked by pre-administered beta-funaltrexamine (10 mg/kg, i.v., 24 h prior to stimulation), a selective long-lasting mu-opioid receptor antagonist. In conclusion, these results clearly demonstrate that the effects of endogenous enkephalins on noxiously evoked spinal c-Fos expression are essentially mediated via mu-opioid receptors.
-
Electrical stimulation of the nucleus submedius (Sm) has been shown to suppress the viscerosomatic reflex (VSR), which is evoked by colorectal distension (CRD). We have examined the effects of focal electrical stimulation (0.3 ms, 50 Hz, 100 microA, 10 s) of the Sm and the periaqueductal gray (PAG) on the excitatory responses evoked by CRD in spinal dorsal horn neurons within the L6-S1 region in the urethane-anesthetized Wistar rats. Extracellular recordings were made from 32 spinal excitatory CRD responses. ⋯ Electrical stimulation in the majority of the sites in the Sm (19/28, 68%) did not affect spinal excitatory CRD responses. On the other hand, electrical stimulation of the PAG clearly inhibited 20 of 22 (90%) CRD excitatory responses. These results suggest that the majority of Sm neurons may suppress VSR activity at a supraspinal reflex center rather than via a descending inhibition of spinal visceral nociceptive transmission, as is the case for the PAG.
-
The effect of diabetes on the effect of diazepam on the propofol-induced loss of the righting reflex was investigated. There was no significant difference in the duration of the propofol-induced loss of the righting reflex between non-diabetic and diabetic mice. Diazepam increased the duration of the propofol-induced loss of the righting reflex in both diabetic and non-diabetic mice. ⋯ These effects were antagonized by the pretreatment with flumazenil. Pretreatment with FG7142, a benzodiazepine receptor inverse agonist, attenuated the duration of the propofol-induced loss of the righting reflex in non-diabetic mice, but not in diabetic mice. These results suggest that the attenuation of the diazepam-induced enhancement of the duration of the propofol-induced loss of the righting reflex in diabetic mice may be due to the dysfunction of benzodiazepine receptors.