Brain research
-
Chronic intake of a palatable sucrose solution enhances the antinociceptive potency of systemically administered mu, and kappa opioid receptor agonists. To investigate whether the effects of sucrose on the actions of opioid drugs are mediated within the central nervous system (CNS), antinociception was examined following the administration of mu and kappa opioid receptor agonists into the periaqueductal gray area (PAG). Male and female Long-Evans rats consumed either water and ground chow, or water, chow and a 32% (w/v) sucrose solution. ⋯ However, antinociceptive responses did not vary as a function of diet in rats injected with spiradoline. In both diet conditions, spiradoline led to greater levels of antinociception in female rats than in male rats. These results support the hypothesis that intake of palatable foods and fluids act within the CNS to moderate the behavioral actions of opioid drugs.
-
Boid and Crotaline snakes use both their eyes and infrared-imaging facial pit organs to target homeothermic prey. These snakes can target in complete darkness, but the eyes can also effectively direct predatory strikes. We investigated the behavioral correlates of boid snakes' simultaneous use of two imaging systems by testing whether congenital unilateral visual deprivation affects targeting performance. ⋯ In contrast, normally sighted snakes subjected to temporary unilateral blinding do not target preferentially on the sighted side. Therefore, while loss of part of the visual field may be compensated for by infrared input in normal snakes, partial absence of visual input during development may alter central organization of visual information. Conversely, absence of half the visual field during development does not alter targeting performance based upon infrared input alone, suggesting that organization of the central infrared map does not depend upon normal organization of visual input.
-
The purpose of this study was to develop a newborn piglet model of hypoxia/ischaemia which would better emulate the clinical situation in the asphyxiated human neonate and produce a consistent degree of histopathological injury following the insult. One-day-old piglets (n=18) were anaesthetised with a mixture of propofol (10 mg/kg/h) and alfentinal (55.5 microg/kg/h) i.v. The piglets were intubated and ventilated. ⋯ The total mean histology score for the five areas of the brain for the severe insult was 15.6+/-4.4 (mean +/-S. D., n=7), whereas no damage was seen in either the mild insult (n=4) or control groups. This 'severe damage' model produces a consistent level of damage and will prove useful for examining potential neuroprotective therapies in the neonatal brain.
-
In a previous study we demonstrated that injection (i.p.) of low doses of GM1 ganglioside in mice rapidly attenuates morphine's analgesic effects. This result is consonant with our electrophysiologic studies in nociceptive types of dorsal root ganglion (DRG) neurons in culture, which showed that exogenous GM1 rapidly increased the efficacy of excitatory (Gs-coupled) opioid receptor functions. By contrast, treatment of DRG neurons with the non-toxic B-subunit of cholera toxin (CTX-B) which binds selectively to GM1, blocked the excitatory, but not inhibitory, effects of morphine and other bimodally-acting opioid agonists, thereby resulting in a net increase in inhibitory opioid potency. ⋯ These results are comparable to the effects of cotreatment of mice with morphine plus an ultra-low dose of the opioid antagonist, naltrexone (NTX) which blocks opioid-induced hyperalgesic effects, unmasking potent opioid analgesia. Low-dose NTX selectively blocks excitatory opioid receptors at their recognition site, whereas CTX-B binds to, and interferes with, a putative allosteric GM1 regulatory site on excitatory opioid receptors. Furthermore, chronic cotreatment of mice with morphine plus CTX-B attenuates development of opioid tolerance and physical dependence, as previously shown to occur during cotreatment with low-dose NTX.
-
Comparative Study
Vagal and sciatic nerve stimulation have complex, time-dependent effects on chemically-induced seizures: a controlled study.
Previous studies of the effects of electrical vagus stimulation on experimental seizures were without suitable controls or statistical validation, and ignored the potential role of vagally-induced hemodynamic depression on seizure expression. This study addresses these limitations. The effects of periodic left vagus nerve stimulation (LVNS) on chemically-induced seizures in rats were compared with control groups receiving no stimulation (NoS), left sciatic nerve stimulation (LSNS) and LVNS after pretreatment with methyl atropine (MA-LVNS). ⋯ In conclusion, cranial and peripheral nerve stimulation have complex, time-varying effects on cerebral excitability: low frequency LSNS facilitated seizures, while LVNS both suppressed and facilitated them. The anti-seizure effect of LVNS was small and may have, in part, been due to a hemodynamically-induced deficit in energy substrates. The effects of MA-LVNS on seizure duration and P(s) raise the possibility that, in the absence of hemodynamic depression, stimulation of this nerve does not have a strong anti-seizure effect.