Brain research
-
Improgan is a derivative of cimetidine that induces non-opioid antinociception after intracerebroventricular (i.c.v.) administration, but the mechanism of action of this compound remains unknown. Since activation of either supraspinal or spinal alpha(2) adrenergic receptors can induce antinociception, and since improgan showed affinity for these receptors in vitro, the effects of the alpha(2) antagonist yohimbine on improgan antinociception were presently studied in rats on the hot plate and tail flick tests. Systemic yohimbine pretreatment (4 mg/kg, i.p.) completely blocked improgan antinociception (80 microg, i.c.v.), suggesting a mediator role for alpha(2) receptors. ⋯ These results suggest that spinal (but not supraspinal) alpha(2) adrenergic receptors play a significant role in the pain-relieving actions of improgan. Furthermore, although improgan shows some affinity at alpha(2) receptors, this drug does not act directly at these receptors to induce antinociceptive responses. Like several other classes of analgesics, improgan-like drugs seem to activate non-opioid, descending pain-relieving circuits.
-
The Na+ -dependent L-glutamate transporters EAAT1(GLAST), EAAT2 (GLT-1) and EAAT3 (EAAC1) are expressed in primary astrocyte cultures, showing that the EAAT3 transporter is not neuron-specific. The presence of these three transporters was evaluated by RT-PCR, immunoblotting, immunocytochemical techniques, and transport activity. When primary astrocyte cultures were incubated with L-buthionine-(S,R)-sulfoximine (BSO), a selective inhibitor of gamma-glutamylcysteine synthetase, the GSH concentration was significantly lower than in control cultures, but the expression and amount of protein of EAAT1, EAAT2 and EAAT3 and transport of L-glutamate was unchanged. ⋯ However, L-glutamate uptake was significantly lower in astrocytes under oxidative conditions when compared to controls. L-Glutamate uptake was not changed in the presence of ascorbate, but was partially recovered in the presence of DTT and GSH ethyl ester. This report emphasizes that oxidative stress and not GSH depletion alters transporter activity without changing transporter expression.
-
Low concentrations of halothane and isoflurane can release acetylcholine in an extracellular Ca(2+)-independent manner. In the present study, a cholinergic cell line (SN56) was used to examine whether release of calcium from intracellular stores occurs in the presence of halothane. Changes in intracellular calcium concentration ([Ca(2+)](i)) were measured using fluo-3, a fluorescent calcium-sensitive dye and laser scanning confocal microscopy. ⋯ Using cyclopiazonic acid, a Ca(2+)-ATPase inhibitor, we investigated whether the depletion of intracellular Ca(2+) stores interfered with the effect of halothane. Cyclopiazonic acid significantly decreased the increase in [Ca(2+)](i) induced by the volatile anesthetic. It is suggested that sub-anesthetic concentrations of halothane may increase [Ca(2+)](i) by releasing Ca(2+) from intracellular stores in cholinergic cells.