Brain research
-
Previous studies have shown that chronic i.v. treatment with morphine or heroin decreased mu opioid receptor activation of G-proteins in specific brain regions. The present study examined the effect of intrathecal (i.t.) morphine administration on receptor/G-protein coupling in the spinal cord. In spinal cord membranes, [35S]GTP gamma S binding was stimulated by agonists of several G-protein-coupled receptors, including mu opioid (DAMGO), delta opioid (DPDPE), GABA(B) (baclofen), cannabinoid CB(1) (WIN 55,212-2), muscarinic cholinergic (carbachol) and adenosine A(1) (PIA). [35S]GTP gamma S autoradiography revealed that most of this agonist activation of G-proteins was localized to laminae I and II of dorsal horn. ⋯ In spinal cord sections, chronic morphine treatment decreased DAMGO-stimulated [35S]GTP gamma S binding in laminae I and II at all levels of spinal cord examined. There were no effects of morphine treatment on [35S]GTP gamma S stimulation in spinal cord by other receptor systems examined (Adenosine A(1) and GABA(B)), and no significant effects of chronic i.t. morphine treatment were observed in brain sections. These data show that homologous desensitization of mu receptor/G-protein coupling occurs specifically in spinal cord following chronic morphine administration.
-
It is well documented that there is an increase in the number of sympathetic fibers within the dorsal root ganglion (DRG) after a peripheral nerve injury. The present study examined the numbers and distribution of sympathetic fibers in the DRG and their sprouting routes by utilizing various surgical manipulations and retrograde tracing and immunohistochemical staining methods in spinal nerve-ligated neuropathic rats. The appearance of many double immunostained fibers with antibodies to tyrosine hydroxylase (TH) and growth associated protein-43 (GAP-43) in the L5 DRG 1 week after L5 spinal nerve ligation, indicated sprouting of sympathetic fibers. ⋯ A second cut proximal to the previously ligated L5 spinal nerve -- a process which would transect the regenerating sympathetic fibers extending from the injury site -- did not change the density of sympathetic fibers in the L5 DRG. When retrograde tracers (fast blue and diamidino yellow) were injected into the L5 spinal nerve and DRG, respectively, the number of double-labeled sympathetic postganglionic neurons was greatly increased after spinal nerve ligation, suggesting the increased number of sympathetic neurons projecting to both the spinal nerve and DRG. All these results indicate that many sympathetic fibers in the DRG are regenerating branches that are sprouting from the proximal part of the injured spinal nerve (regenerative collateral sprouting).
-
To elucidate the mechanisms involved in beta-amyloid-mediated inflammation in Alzheimer's disease, transgenic Tg2576 mice containing as transgene the Swedish double mutation of human amyloid precursor protein 695, were examined for the expression pattern of various cytokines using double immunocytochemistry and laser scanning microscopy. Tg2576 mice studied at postnatal ages of 13, 16 and 19 months demonstrated an age-related accumulation of both senile and diffuse beta-amyloid plaques in neocortex and hippocampus. ⋯ The early beta-amyloid-mediated upregulation of IL-1beta, TGF-beta, and IL-10 in surrounding reactive astrocytes indicates the induction of both pro- and anti-inflammatory mechanisms. The transgenic approach used in this study may thus provide a useful tool to further disclose the in vivo mechanisms by which pro- and anti-inflammatory cytokines interact and/or contribute to the progression of Alzheimer's disease.
-
The effects of inhibitors of the glial Na+/glutamate co-transporter on the intracellular Na+ concentration ([Na+](i)) were investigated in mouse cortical astrocytes. [Na+](i) was monitored by fluorescence microscopy on single astrocytes using the Na+-sensitive probe sodium-binding benzofuran isophtalate. Application of the competitive inhibitors threo-beta-hydroxyaspartate (THA) and trans-pyrrolidine-2,4-dicarboxylic acid (t-PDC) resulted in robust and reversible increases in [Na+](i) that were comparable in shape to the response to glutamate but about twice lower in amplitude. As previously observed with glutamate, the amplitude of the [Na+](i) response to these compounds was concentration-dependent with EC(50) values of 11.1 microM (THA) and 7.6 microM (t-PDC), as was the initial rate of [Na+](i) rise (EC(50) values of 14.8 microM for THA and 11.5 microM for t-PDC). ⋯ The maximum inhibition of glutamate-evoked [Na+](i) increase by TBOA was approximately 70%. The residual response persisted in the presence of a non-NMDA receptor antagonist or the inhibitor of the GLT-1 glutamate transporters, dihydrokainate (DHK). In view of the complete reversibility of its effects, TBOA represents a very useful pharmacological tool for studies of glutamate transporters.
-
The firing of neurones in spinal segments adjacent to a contusive T13 spinal cord injury was characterised in anaesthetised rats. Three groups of rats were examined: (1) allodynic spinally injured, (2) non-allodynic spinally injured and (3) normal, uninjured. Spinal cord field potentials evoked by electrical dorsal root stimulation and the responses of 207 dorsal horn neurones to mechanical stimuli applied to the skin were studied. ⋯ These changes were observed both rostral and caudal to the site of injury. The results suggest that an increased responsiveness of some dorsal horn neurones in segments neighbouring a contusive spinal cord injury may contribute to the expression of mechanical allodynia. It is proposed that a relative lack of inhibition underlies altered cell responses.