Brain research
-
Comparative Study
Increased expression of neuronal nitric oxide synthase in bladder afferent cells in the lumbosacral dorsal root ganglia after chronic bladder outflow obstruction.
Nitric oxide (NO), a neurotransmitter in autonomic reflex pathways, plays a role in functional neuroregulation of the lower urinary tract. Upregulation of the levels of neuronal nitric oxide synthase (nNOS), the enzyme system responsible for NO synthesis, has been documented in the peripheral, spinal and supraspinal segments of the micturition reflex in diseases such as cystitis, bladder/sphincter dyssynergia following spinal cord injury and bladder overactivity after cerebral infarction. These observations suggest that NO might play a role in the development of bladder overactivity. ⋯ A differential distribution of nNOS-IR was subsequently evaluated in bladder afferent neurons in the DRG and in the associated spinal cord segments. The percentage of bladder afferent neurons expressing nNOS-IR was increased in L6 (1.8-fold in males and 1.9-fold in females) and S1 (2.8-fold in males and 5.3-fold in females) DRG. In contrast, no changes in nNOS-IR in neurons or fiber distribution were observed in any spinal cord segments examined.
-
Comparative Study
Functional validation of adult hippocampal organotypic cultures as an in vitro model of brain injury.
To determine whether hippocampal pyramidal neurons retain authentic functional properties in mature organotypic culture, hippocampal slice cultures were established from young adult rats (P20-21). Cultures maintained 7 days in vitro retained tight organization of neuronal layers, as opposed to the widening restructure of pyramidal neurons often observed in perinatal slices. CA3 and CA1 pyramidal neurons fired action potentials in response to current injection and exhibited spontaneous and evoked synaptic currents, indicating intact neuronal function and normal hippocampal neural circuitry. ⋯ Acute ischemic paradigm resulted in selective death of pyramidal neurons in the CA1 region, which was prevented by treatment with an NMDA-antagonist, MK-801. Robust efflux of excitatory and inhibitory amino acid neurotransmitters was detected during ischemia, consistent with changes shown in acute slices. In summary, hippocampal organotypic cultures prepared from young adult rats maintained neuronal architecture and synaptic activity in vitro and can be used in parallel with an acute slice system to model mature brain tissue to examine ischemic pathophysiology and neuroprotective treatment.