Brain research
-
Increasing evidence suggests that c-Jun N-terminal kinase (JNK) is an important kinase mediating neuronal apoptosis in brain ischemia. To further study the roles of JNK activation in hippocampal CA1 neurons in a rat model of transient global ischemia, we assessed the effect of JNK inhibition by SP600125 on the degree of brain injury. ⋯ These results indicate that SP600125, a new inhibitor of JNK, protected transient brain ischemia/reperfusion-induced neuronal death in rat hippocampal CA1 region at least via suppressing the activation of nuclear substrate (c-Jun) and inactivating non-nuclear substrate (Bcl-2) induced by ischemic insult. Thus, inhibiting JNK activity by SP600125 may represent a new and effective strategy to treat ischemic stoke.
-
In the present study, we tested the ability of sevoflurane to induce early and late preconditioning against ischemic neuronal injury using an in vivo model of global cerebral ischemia in the rat. Seven-minute global ischemia was induced by cardiac arrest, followed by resuscitation and recovery for 7 days. Hippocampal slices were then prepared and the amplitude of extracellularly recorded, orthodromically evoked, CA1 population spikes (neuronal function) was quantified. ⋯ After early or late preconditioning, sevoflurane reduced ischemic neuronal damage from 43 +/- 3% [sham rats, (mean +/- SEM)] to 30 +/- 3% and 35 +/- 4%, respectively. Histopathology demonstrated a preserved morphology of the CA1 region of preconditioned rats, whereas pyknosis was present in control and sham-treated rats. Sevoflurane-induced preconditioning confers neuroprotection during an early as well as late time window.
-
Comparative Study
The neuroprotective effect of glial cell line-derived neurotrophic factor in fibrin glue against chronic focal cerebral ischemia in conscious rats.
Glial cell line-derived neurotrophic factor (GDNF) is a transforming growth factor-beta which has shown beneficial effects in rats after acute focal cerebral ischemia (FCI). To study the effects of GDNF on chronic FCI injury in conscious rats, we used fibrin glue (GDNF-fibrin glue) and fibrin glue free (GDNF-only)-GDNF topically applied to the ischemic brain after right middle cerebral artery (MCA) ligation. Infarct brain volume and functional motor deficits were measured before and after FCI injury. ⋯ The mean values of grasping power were 78.7%, 71.7%, and 101.2% (P < 0.05 vs. control group and GDNF-only group) of baseline, respectively, in the control, GDNF-only, and GDNF-fibrin glue groups at the end of 1st week after FCI injury but 89.6%, 97.6%, and 120.7% (P < 0.05 vs. control group) of baseline at the end of 4th week after FCI injury. These results indicate that GDNF-fibrin glue not only reduced the total infarct volume after FCI injury but can also improve motor deficits after FCI injury. We concluded GDNF-fibrin glue could facilitate delivery of GDNF to the damaged brain tissue with subsequent reduction of ischemic brain injury accompanied by enhancing functional recovery in rats with chronic FCI injury.