Brain research
-
This study was designed to investigate the effect of acute and chronic intrathecal (i.t.) injection of gabapentin (GBP) on the antinociceptive effect of morphine and tolerance development using a tail-flick latency test. Levels of excitatory amino acids (EAA) in i.t. CSF dialysates were also measured by high performance liquid chromatography. ⋯ Acute injection of GBP (10 microg i.t.), morphine (50 microg i.t.), or GBP (10 microg i.t.) followed by morphine (50 microg i.t.) 30 min later had no significant effect on CSF EAA concentration in naïve rats; however, in tolerant rats, morphine challenge (50 microg i.t.) increased aspartate and glutamate levels to 221 +/- 22% and 296 +/- 43%, respectively, of those before morphine challenge, and this phenomenon was inhibited by GBP co-infusion. Our results show that GBP, at a dose without enhanced effect on morphine's antinociception in naïve rats, not only potentiates morphine's antinociceptive effect in morphine-tolerant rats but also attenuates the development of morphine tolerance. The mechanism of the effect of GBP on morphine tolerance might be via suppression of the EAA concentration in spinal CSF dialysate.
-
Comparative Study
NOC/oFQ activates ERK and JNK but not p38 MAPK to impair prostaglandin cerebrovasodilation after brain injury.
Fluid percussion brain injury (FPI) elevates the CSF concentration of the opioid nociceptin/orphanin FQ (NOC/oFQ), which contributes to impairment of pial artery dilation to the prostaglandins (PG) PGE2 and PGI2. This study investigated the role of the ERK, p38, and JNK isoforms of mitogen-activated protein kinase (MAPK) in impaired PG cerebrovasodilation after FPI, and the relationship of brain injury induced release of NOC/oFQ to MAPK in such vascular impairment in newborn pigs equipped with a closed cranial window. FPI blunted PGE2 pial artery dilation, but U 0126 and SP 600125 (10(-6) M) (ERK and JNK MAPK inhibitors, respectively) partially prevented such impairment (7 +/- 1, 12 +/- 1, and 17 +/- 1 vs. 2 +/- 1, 3 +/- 1, and 5 +/- 1 vs. 4 +/- 1, 7 +/- 1, and 12 +/- 1% for 1, 10, and 100 ng/ml PGE2 in control, FPI, and FPI + U 0126 pretreated animals, respectively). ⋯ Administration of SB 203580 did not prevent impairment of PG pial artery dilation by NOC/oFQ. These data show that activation of ERK and JNK but not p38 MAPK contributes to impairment of PG cerebrovasodilation after FPI. These data suggest that NOC/oFQ induced ERK and JNK but not p38 MAPK activation contributes to impaired cerebrovasodilation to PG after FPI.
-
Comparative Study
Orexin fibers form appositions with Fos expressing neuropeptide-Y cells in the grass rat intergeniculate leaflet.
Neuropeptide-Y (NPY) cells in the intergeniculate leaflet (IGL) are known to modulate effects of arousal on the mammalian circadian system. However, the route through which this information reaches the IGL has not been established. ⋯ Specifically, many NPY cells in the grass rat IGL exhibit orexin-A (OXA) fiber appositions. Furthermore, NPY cells contacted by OXA fibers are significantly more likely to express Fos during nocturnal wheel running than are NPY cells without such contacts (P < 0.001).
-
Comparative Study
Exercise increased BDNF and trkB in the contralateral hemisphere of the ischemic rat brain.
Previous studies have suggested that brain-derived neurotrophic factor (BDNF) and trkB both have a role in plasticity following brain insults and exercise increases BDNF and trkB mRNA levels in the normal brain. We attempted to determine whether treadmill exercise improves motor function following experimental cerebral ischemia, and whether motor outcome is associated with BDNF and trkB expression. ⋯ In the exercise group, improvements in the motor behavior index were found and BDNF and trkB proteins in contralateral hemisphere were increased. This study suggests that after permanent brain ischemia, exercise improves motor performance and elevates BDNF and trkB proteins in the contralateral hemisphere.
-
Comparative Study
Functional expression of P2X7 receptors in non-neuronal cells of rat dorsal root ganglia.
The P2X7 receptor is an ATP-sensitive ligand-gated cation channel, expressed predominantly in cells with immune origin. Recent studies have demonstrated that P2X7 may play an important role in pain signaling. In the present study, the expression of P2X7 receptors in non-neuronal cells and neurons isolated from dorsal root ganglia was characterized using patch clamp, pharmacological and confocal microscopy approaches. ⋯ Further electrophysiological studies showed that prolonged agonist activation of P2X7 receptors in non-neuronal cells did not lead to cytolytic pore formation. Taken together, the present study demonstrated functional expression of P2X7 receptors in non-neuronal but not in small diameter neurons from rat DRG. Modulation of P2X7 receptors in non-neuronal cells might have impact on peripheral sensory transduction under normal and pathological states.