Brain research
-
Comparative Study
Transhemispheric depolarizations persist in the intracerebral hemorrhage swine brain following corpus callosal transection.
Spontaneous episodes of spreading depression (SD) originating in multiple sources adjacent to a focal intracerebral hemorrhage (ICH) propagate into brain regions away from the lesion site soon after injury onset. Although these transient depolarizations have not been established in the opposite hemisphere of the swine ICH model, we have reported a diminishing of sensory responsiveness in this homotopic brain region following induction of a unilateral hemorrhage lesion. This study examined whether transient depolarizations exist in this distant brain region contralateral to the ICH site. ⋯ These transient depolarizations also persisted throughout 11-h recording period indicating that the corpus callosal transection did not hinder these remote propagating waves of depolarization. The presence of SD in the SI cortices of both hemispheres in all experimental groups of this study suggests that a focal mechanical or hemorrhagic injury increases the susceptibility of distant ipsilateral and contralateral brain regions to depolarizing perturbations. The mechanism for these transient depolarizations in the contralateral hemisphere apparently does not involve transhemispheric propagation along corpus callosal fibers.
-
Comparative Study
Release of GABA from sensory neurons transduced with a GAD67-expressing vector occurs by non-vesicular mechanisms.
We have demonstrated that dorsal root ganglion neurons transduced with a recombinant replication-defective herpes simplex virus vector coding for glutamic acid decarboxylase (QHGAD67) release GABA to produce an analgesic effect in rodent models of pain. In this study, we examined the mechanism of transgene-mediated GABA release from dorsal root ganglion neurons in vitro and in vivo. ⋯ The amount of GABA released from a spinal cord slice preparation, prepared from animals transduced by subcutaneous inoculation of QHGAD67 in the hind paws, was substantially increased compared to animals transduced with control vector Q0ZHG or normal animals, but the amount of GABA released was not changed by stimulation of the dorsal roots at either low (0.1 mA, 0.5-ms duration) or high (10 mA, 0.5-ms duration) intensity. We conclude that QHGAD67-mediated GABA release from dorsal root ganglion neurons is non-vesicular, independent of electrical depolarization, and that this efflux is mediated through reversal of the GABA transporter.
-
The suprachiasmatic nucleus (SCN) of the hypothalamus contains the primary circadian pacemaker in both diurnal and nocturnal mammals. The lower subparaventricular zone (LSPV) immediately dorsal to the SCN may also play an important role in the regulation of circadian rhythms. The SCN contains a multitude of oscillator cells that generate circadian rhythms through transcriptional/translational feedback loops involving a set of clock genes including per1 and per2. ⋯ Rhythmic expression of PER1 and PER2 was also seen in the LSPV providing support for the hypothesis that this region might participate in circadian time keeping in the diurnal grass rat. In addition, rhythms were seen lateral to the LSPV and the SCN. Results of this study are discussed in light of similarities and differences in the circadian time-keeping systems of day- and night-active animals.
-
Comparative Study
Comparison of the in vitro efficacy of mu, delta, kappa and ORL1 receptor agonists and non-selective opioid agonists in dog brain membranes.
Morphine and related opioid agonists are frequently used in dogs for their analgesic properties, their sedative effects and as adjuncts to anesthesia. Such compounds may be effective through a combined action at mu-, delta- and kappa-opioid receptors. In this work, the in vitro relative agonist efficacy of ligands selective for mu (DAMGO)-, delta (SNC80)- and kappa (U69593)-opioid receptors as well as the opioid receptor-like receptor ORL(1) (orphaninFQ/nociceptin) which may mediate nociceptive or antinociceptive actions was determined using the [35S]GTPgammaS binding assay in membrane homogenates from the frontal cortex, thalamus and spinal cord of beagle dogs. ⋯ There was no significant difference in the potency of compounds to stimulate [35S]GTPgammaS binding between cortex and thalamus, with the exception of etorphine. Buprenorphine, the partial mu-opioid receptor agonist and kappa-, delta-opioid receptor antagonist, which does have analgesic efficacy in the dog, showed no agonism in any tissue but was an effective mu-opioid receptor > ORL1 receptor antagonist. The results show that the ability of agonists to stimulate [35S]GTPgammaS binding relates to the receptor distribution of opioid and ORL1 receptors in the dog.
-
Norepinephrine, acting via beta-adrenoceptors, enhances the perforant path-evoked potential in dentate gyrus. Using systemic idazoxan to increase norepinephrine, and paired perforant path pulses to probe early inhibition, previous investigators reported that idazoxan increased initial spike amplitude and increased somatic feedback inhibition. Here, feedback inhibition was re-examined in idazoxan-treated (5 mg/kg) rats under urethane anesthesia. ⋯ Decreased EPSP slope ratios with similar paired pulse intervals have been reported in novel environments. Since exposure to novel environments activates locus coeruleus neurons, norepinephrine may mediate the change in EPSP slope inhibition reported in awake rats. In summary, these results are consistent with the hypothesis that idazoxan potentiates granule cell responses to perforant path input in the dentate gyrus via increases in norepinephrine that lead to beta-adrenoceptor activation, and, further, that idazoxan reduces paired pulse feedback spike facilitation and enhances EPSP slope, but not spike, feedback inhibition.