Brain research
-
FK-506 confers a neuroprotective effect and is thought to extend the time window for thrombolytic treatment of cerebral ischemia. These effects have not been assessed in an embolic stroke model. In addition, clinical studies have raised concern that FK-506 may increase the risk of hemorrhagic transformation by damaging vascular endothelial cells. ⋯ FK-506 extended the therapeutic time window for systemic thrombolysis compared to rt-PA alone without increasing the risk for hemorrhage. Combined therapy with FK-506 salvaged some of the MRI, revealing ischemic lesions destined to infarction in the animals treated by rt-PA alone. Single low dose of FK-506 alone did not ameliorate the embolic infarction, but it did prove effective in extending the therapeutic time windows for thrombolysis without increasing the risk of hemorrhagic transformation.
-
We have previously noted that the antinociceptive efficacy of morphine was significantly decreased in rat pups chronically infused with morphine from implanted osmotic minipumps. In this study, morphine was fully efficacious (i.e., 100% maximum possible effect, %MPE) in the 52 degrees C tail-immersion test after a 72-h infusion from implanted saline-filled osmotic minipumps. However, administration of up to 1000 mg/kg, s.c. morphine failed to elicit greater than a 27% MPE in rats infused with morphine at 2 mg/kg/h. ⋯ In adult rats, the mu-opioid receptor is desensitized during morphine tolerance. However, desensitization was not evident in P17 rats based on the lack of significant decreases in [(35)S]GTPgammaS binding. Furthermore, [(3)H]naloxone binding indicated a lack of mu receptor downregulation in morphine-tolerant rat pups.
-
Vasogenic brain edema is one of the major determinants for mortality following subarachnoid hemorrhage (SAH). Although the formation of vasogenic brain edema occurs on the microvascular level by opening of endothelial tight junctions and disruption of the basal lamina, microvascular changes following experimental SAH are poorly characterized. The aim of the present study was therefore to investigate the time course of blood-brain barrier (BBB) dysfunction and basal lamina damage following SAH as a basis for the better understanding of the pathophysiology of SAH. ⋯ Microvascular damage as documented by collagen IV degradation and albumin extravasation is a long lasting and ongoing process following SAH. Due to its delayed manner microvascular damage may be prone for therapeutic interventions. However, further investigations are needed to determine the molecular mechanisms responsible for basal lamina degradation and hence damage of the microvasculature following SAH.
-
Cerebral blood flow (CBF), a surrogate of neural activity in the identification of brain regions involved in specific functions, has been used in this report to trace the compensatory enhancement of activity in non-traumatized areas of the brain following a focal lesion. We have previously shown activation of CBF in the cortex contralateral to a focal contusion, 24 h after the event. The present report extends the characterization of this trans-hemispheric cortical blood flow activation by studying its time course and regional distribution from 4 days to 4 weeks post-trauma. ⋯ This phenomenon was present in all cortical regions symmetrical to the impact zone, but also in auditory, visual, entorhinal and insular cortex. These results suggest that the participation of the contralateral cortex in the recovery from unilateral brain trauma is not limited to the regions homologous to those that received the impact. The time course of CBF changes was found to be consistent with the recovery of motor function in this model.