Brain research
-
Early brain injury (EBI) plays a key role in the pathogenesis of subarachnoid hemorrhage (SAH). Although the neuroprotective effects of ghrelin have been demonstrated in several studies, whether ghrelin reduces EBI after SAH remains unknown. In this study, we hypothesized that treatment with ghrelin would attenuate EBI after SAH, and that this protection would be mediated, at least in part, by activation of the PI3K/Akt signaling pathway. ⋯ Additionally, the level of cleaved caspase-3 was decreased by ghrelin treatment. The beneficial effects of ghrelin in SAH rats were partially suppressed by LY294002. These results demonstrate that ghrelin may reduce EBI after SAH, via a mechanism involving the PI3K/Akt signaling pathway.
-
Emotional scene perception is associated with enhanced activity in ventral occipitotemporal cortex and amygdala. While a growing body of research supports the perspective that emotional perception is organized via amygdala feedback to rostral ventral visual cortex, the contributions of high-order thalamic structures strongly associated with visual attention, specifically the mediodorsal nucleus and pulvinar, have not been well investigated. ⋯ Consistent with recent research, the latency of emotional discrimination across subcortical and visual cortical regions suggests a role for the amygdala in the early evaluation of scene emotion. These data support the perspective that higher order visual thalamic structures are sensitive to the emotional value of complex scene stimuli, and may serve in concert with amygdala and fusiform gyrus to modulate visual attention toward motivationally relevant cues.
-
Stellate ganglion block (SGB) is a blockade of sympathetic ganglia innervating the head and neck, and is known to function through vasodilation of the target region. However, the effectiveness of SGB in relieving cerebral vasospasm (CVS) through dilation of intracerebral vessels has not been evaluated. The aim of the present study is to investigate the therapeutic effects of SGB in a rat model of subarachnoid hemorrhage (SAH) complicated by delayed CVS, and explore the underlying mechanisms. ⋯ The mechanism of action of SGB is likely mediated through alterations in the ratio of ET-1 and CGRP, and Bax and Bcl-2. These results suggest that SGB can alleviate the severity of delayed CVS by inducing dilation of intracerebral blood vessels, and promoting anti-apoptotic signaling. Our findings provide evidence supporting the use of SGB as an effective and well-tolerated approach to the treatment of CVS in various clinical settings.
-
Functional connectivity of dorsal and ventral frontoparietal seed regions during auditory orienting.
Our ability to refocus auditory attention is vital for even the most routine day-to-day activities. Shifts in auditory attention can be initiated "voluntarily," or triggered "involuntarily" by unexpected novel sound events. Here we employed psychophysiological interaction (PPI) analyses of auditory functional MRI data, to compare functional connectivity patterns of distinct frontoparietal cortex regions during cued voluntary vs. novelty-driven involuntary auditory attention shifting. ⋯ We also found indices of lateralization of different attention networks: PPI increases selective to voluntary attention occurred primarily within right-hemispheric regions, whereas those related to involuntary orienting were more frequent with left-hemisphere seeds. In conclusion, despite certain similarities in PPI patterns across conditions, the more dorsal aspects of right frontoparietal cortex demonstrated wider connectivity during cued/voluntary attention shifting, whereas certain left ventral frontoparietal seeds were more widely connected during novelty-triggered/involuntary orienting. Our findings provide partial support for distinct attention networks for voluntary and involuntary auditory attention.
-
The fruit fly Drosophila melanogaster has long been used as a model organism for human diseases, including Parkinson׳s disease (PD). Its short lifespan, simple maintenance, and the widespread availability of genetic tools allow researchers to study disease mechanisms as well as potential drug therapies. Many different PD models have already been developed, including ones utilizing mutated α-Syn and chronic exposure to rotenone. ⋯ We further show that combining the two models, by exposing A53T mutant larvae to rotenone, causes a much more severe PD phenotype (i.e. locomotor deficit). Our finding shows interaction between genetic and environmental factors underlying development of PD symptoms. This model can be used to further study mechanisms underlying the interaction between genes and different environmental PD factors, as well as to explore potential therapies for PD treatment.