Brain research
-
Sexual neurosteroids (SN), namely 17β-estradiol (E2) and 5α-dehydrotestosterone (DHT), are synthesized in the hippocampus, where they induce circuit modifications by changing the number of excitatory spine synapses in a paracrine and sex-specific manner. The mechanisms of this sex-specific synapse turnover, which are likely to affect cognitive functions, are poorly understood. We found that hippocampal neurons synthesize estradiol, which maintains LTP and synapses in females but not in males. ⋯ The essential role of local estrogen on the stability and maintenance of connectivity in the hippocampus is consistent with age-related cognitive decline in women after menopause. In male animals the regulation of synaptic stability and plasticity by locally synthesized sexual steroids remains to be clarified. This article is part of a Special Issue entitled SI: Brain and Memory.
-
We performed here a systematic review of the studies using transcranial magnetic stimulation (TMS) as a research and clinical tool in patients with spinal cord injury (SCI). Motor evoked potentials (MEPs) elicited by TMS represent a highly accurate diagnostic test that can supplement clinical examination and neuroimaging findings in the assessment of SCI functional level. MEPs allows to monitor the changes in motor function and evaluate the effects of the different therapeutic approaches. ⋯ Some researchers have begun to therapeutically use repetitive TMS (rTMS) in patients with SCI. Initial studies revealed that rTMS can induce acute and short duration beneficial effects especially on spasticity and neuropathic pain, but the evidence is to date still very preliminary and well-designed clinical trials are warranted. This article is part of a Special Issue entitled SI: Spinal cord injury.
-
Astrogliosis is a defense response of the CNS to minimize primary damage and to repair injured tissues, but it ultimately generates harmful effects by upregulating inhibitory molecules to suppress neuronal elongation and forming potent barriers to axon regeneration. Chondroitin sulfate proteoglycans (CSPGs) are highly expressed by reactive scars and are potent contributors to the non-permissive environment in mature CNS. Surmounting strong inhibition by CSPG-rich scar is an important therapeutic goal for achieving functional recovery after CNS injuries. ⋯ Thus, CSPGs inhibit axon growth through multiple mechanisms, making them especially potent and difficult therapeutic targets. Identification of CSPG receptors is not only important for understanding the scar-mediated growth suppression, but also for developing novel and selective therapies to promote axon sprouting and/or regeneration after CNS injuries. This article is part of a Special Issue entitled SI: Spinal cord injury.
-
The injured spinal cord does not heal properly. In contrast, tissue repair and functional recovery occur after skin or muscle injuries. The reason for this dichotomy in wound repair is unclear but inflammation, and specifically macrophage activation, likely plays a key role. ⋯ The desynchronized macrophage activation after spinal cord injury is reminiscent of the inflammation present in chronic, non-healing wounds. By refining the role macrophages play in spinal cord injury repair we bring to light important areas for future neuroinflammation and neurotrauma research. This article is part of a Special Issue entitled SI: Spinal cord injury.