Brain research
-
Parkinson's disease is a major neurodegenerative disorder which primarily involves the loss of dopaminergic neurons in the substantia nigra and related projections in the striatum. The pesticide/neurotoxin, rotenone, has been shown to cause systemic inhibition of mitochondrial complex I activity in nigral dopaminergic neurons, with consequent degeneration of the nigrostriatal pathway, as observed in Parkinson's disease. A novel intrastriatal rotenone model of Parkinson's disease was used to examine the neuroprotective effects of chronic low-dose treatment with the antioxidant indoleamine, melatonin, which can upregulate neurotrophic factors and other protective proteins in the brain. ⋯ Stereological cell counts indicated a significant (p<0.05) decrease in dopamine neurons in the substantia nigra of rotenone-lesioned animals, which was confirmed by Nissl staining. Importantly, chronic melatonin treatment blocked the loss of dopamine neurons in rotenone-lesioned animals. These findings strongly support the therapeutic potential of long-term and low-dose melatonin treatment in Parkinson's disease.
-
Deep brain stimulation in the midbrain׳s central gray can relieve neuropathic pain in man, but for unclear reasons sometimes fails intraoperatively or in early weeks. Here we describe continuous bilateral stimulation in the central gray of two subjects with longstanding, severe neuropathic pain from spinal cord injury. Stimulation parameters were recursively adjusted over many weeks to optimize analgesia while minimizing adverse effects. ⋯ Oscillopsia, the only observed complication of stimulation, disappeared at low mean pulse rates (≤ 3/s). These subjects׳ responses are not likely to be unique even if they are uncommon. Thus daily or more frequent pain assessment, combined with slower periodic adjustment of stimulation parameters that incorporate mean pulse rates about one per second, will likely improve success with this treatment.
-
Previous studies have shown that inhibition of prolyl hydroxylase(PHD) stabilizes Hypoxia-inducible factor 1, alpha subunit(HIF-1α), increases tolerance to hypoxia, and improves the prognosis of many diseases. However, the role of PHD inhibitor (PHDI) in the recovery of spinal cord injury remains controversial. In this study, we investigated the protective role of a novel PHDI FG-4592 both in vivo and in vitro. ⋯ Combination therapy including the specific HIF-1α blocker YC-1 down-regulated the HIF-1α expression and partially abolished the protective effect of FG-4592. Taken together, our results revealed that the role of FG-4592 in SCI recovery is related to the stabilization of HIF-1α and inhibition of apoptosis. Overall, our study suggests that PHDIs may be feasible candidates for therapeutic intervention after SCI and central nervous system disorders in humans.
-
Migraine is one of the most prevalent neurological disorders which is suggested to be associated with dysfunctions of the central nervous system. The purpose of the present study was to detect the altered functional connectivity architecture in the large-scale network of the whole brain in migraine without aura (MWoA). Meanwhile, the brain functional hubs which are targeted by MWoA could be identified. ⋯ In addition, short-range FCD values in left prefrontal cortex, putamen and caudate nucleus were significantly negatively correlated with duration of disease in MWoA group, implying the repeated migraine attacks over time may consistently affect the resting-state functional connectivity architecture of these brain hubs. Our findings revealed the dysfunction of brain hubs in female MWoA, and suggested the left prefrontal cortex, putamen and caudate nucleus served as sensitive neuroimaging markers for reflecting the disease duration of female MWoA. This may provide us new insights into the changes in the organization of the large-scale brain network in MWoA.