Brain research
-
Randomized Controlled Trial
Effects of mild traumatic brain injury and post-traumatic stress disorder on resting-state default mode network connectivity.
Mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD) are common outcomes for service members. Abnormal connectivity within neural networks has been reported in the resting brain of mTBI and PTSD patients, respectively; however, the potential role of PTSD in changes to neural networks following injury has not been studied in detail. Using a data-driven approach, the present analysis aimed to elucidate resting state functional connectivity in the default mode network (DMN) in those with mTBI only and those with comorbid mTBI and PTSD. ⋯ For all subjects with mTBI, network connectivity correlated inversely with PTSD checklist score (p < 0.05). Additionally, distinct associations (p < 0.05) between medial prefrontal cortex connectivity and PTSD symptoms and, separately, posterior cingulate cortex connectivity and mTBI-related cognitive deficits were found. To our knowledge, this is the first study to report a differential relationship between DMN components and both post-traumatic symptoms and cognitive outcomes.
-
Hypotension and low cerebral perfusion pressure are associated with low cerebral blood flow, cerebral ischemia, and poor outcomes after traumatic brain injury (TBI). Cerebral autoregulation is impaired after TBI, contributing to poor outcome. In prior studies, ERK mitogen activated protein kinase (MAPK) and ET-1 had been observed to be upregulated and contribute to impairment of cerebral autoregulation and histopathology after fluid percussion brain injury (FPI). ⋯ Results show that pial artery dilation in response to the Katp agonist cromakalim, the Kca agonist NS1619, PGE2 and the NO releaser sodium nitroprusside (SNP) were blocked by FPI, but such impairment was prevented by iNO administered at 2 h post injury. Protection lasted for at least 1 h after iNO administration was stopped. Using vasodilaton as an index of function, these data indicate that iNO prevents impairment of cerebral autoregulation and limits histopathology after TBI through protection of K channel function via blockade of ERK MAPK and ET-1.