Brain research
-
Comparative Study
A direct comparison of the electrophysiological effects of transcranial direct and alternating current stimulation in healthy subjects.
Despite the clinical effectiveness of transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), the comparability of these interventions in neurophysiological aspects have not been thoroughly investigated. Thus, we aimed to directly compare the electrophysiological effects of single-session tDCS and gamma-tACS in healthy subjects, matching the intervention protocol as closely as possible. ⋯ The present study indicates that tDCS and tACS resulted in an increased range of frequency activity, including slow- and fast-wave bands. Specifically, tDCS modulates the frontal region, while tACS modulates neural oscillations at the fronto-central, parietal, and temporal areas. The tACS also decreased low-beta source activity in the middle temporal gyrus. Identifying the common and unique EEG patterns of tDCS and tACS may help shed light on their potential clinical benefits and distinctive neuropathology in various clinical symptoms.
-
Valproate (VPA) is capable of attenuating ischemic stroke (IS)-related disorders in brain tissues. Long non-coding RNAs (lncRNAs) are involved in the progression of IS. In the current study, the role of lncRNA RMRP in the protective effects of VPA against IS was explored. ⋯ Moreover, the induced expression of RMRP blocked the anti-OGD function of VPA, indicating the key role of RMRP inhibition in the effects of VPA on nerve system. Collectively, VPA attenuated MCAO/OGD-induced disorders in mice and microglia. The effects were dependent on the inhibition of RMRP, which subsequently induced the activation of PI3K/Akt signaling.
-
Previous research with transcranial magnetic stimulation (TMS) indicates that coil orientation (TMS current direction) and muscle activation state (rest or active) modify corticospinal and intracortical excitability of upper limb muscles. However, the extent to which these factors influence corticospinal and intracortical excitability of lower limb muscles is unknown. This study aimed to examine how variations in coil orientation and muscle activation affect corticospinal and intracortical excitability of tibialis anterior (TA), a lower leg muscle. ⋯ TMS coil orientation and muscle activation influence measurements of intracortical excitability recorded in the tibialis anterior, and are therefore important considerations in TMS studies of lower limb muscles.