Brain research
-
High-mobility group box1 (HMGB1) is a nuclear protein widely expressed in the central nervous system. Extracellular HMGB1 serves as a proinflammatory cytokine and contributes to brain injury during the acute stage post-stroke. Recently, increasing evidence has demonstrated beneficial effects of HMGB1 in some types of brain injury, but little is known about its effects during the late phase of subarachnoid hemorrhage (SAH). ⋯ Recombinant HMGB1 can promote cytokine stimulating activity and aggravate brain injury. However, oxidized HMGB1 was unable to stimulate TNF production but can promote brain recovery by promoting neurotrophin expression. In conclusion, our investigation identified that HMGB1 promotes neurovascular recovery via Rage and may act in the oxidized state in the late stage of SAH.
-
Although hypothermic-targeted temperature management (HTTM) holds great potential for the treatment of traumatic brain injury (TBI), translation of the efficacy of hypothermia from animal models to TBI patientshas no entire consistency. This study aimed to find an ideal time window model in experimental rats which was more in accordance with clinical practice through the delayed HTTM intervention. Sprague-Dawley rats were subjected to unilateral cortical contusion injury and received therapeutic hypothermia at 15mins, 2 h, 4 h respectively after TBI. ⋯ Furthermore, we observed that therapeutic hypothermia increased DCX expression, decreased GFAP expression, upregulated Bcl-2 expression and downregulated Bax and cleaved Caspase-3 expression. The above results suggested that HTTM at 2h or even at 4h post-injury revealed beneficial brain protection similarly, despite the best effect at 15min post-injury. These findings may provide relatively ideal time window models, further making the following experimental results more credible and persuasive.
-
The aim of the current study was to examine the effect of dorsal hippocampal nicotinic acetylcholine receptors (nAChRs) activation on the functional interaction between ethanol and 3,4-methylenedioxy-N-methylamphetamine (MDMA or ecstasy) in memory retrieval. The dorsal hippocampal CA1 regions of adult male NMRI mice were bilaterally cannulated and memory retrieval was measured in a step-down type passive avoidance apparatus. Post-training or pre-test systemic administration of ethanol (1g/kg, i.p.) induced amnesia. ⋯ It is important to note that intra-CA1 microinjection of the same doses of MDMA or nicotine could not affect memory formation by itself. Pre-test intra-CA1 microinjection of nicotine (0.3-0.9µg/mouse) could not reverse amnesia induced by pre-training administration of ethanol while this treatment enhanced MDMA response on ethanol state-dependent learning. Thus, it can be concluded that there may be functional interactions among ethanol, MDMA and nicotine via the dorsal hippocampal nicotinic acetylcholine receptor mechanism in memory retrieval and drug state-dependent learning.
-
Major depressive disorder (MDD) is one of the most significant contributors to the global burden of illness. Diffusion tensor imaging (DTI) is a procedure that has been used in several studies to characterize abnormalities in white matter (WM) microstructural integrity in MDD. These studies, however, have provided divergent findings, potentially due to the large variety of methodological alternatives available in conducting DTI research. ⋯ Importantly, for the AD metric, the normalization methods and fitting procedures showed reliable differences, both in the volume and in the number of significant between-groups difference clusters detected. Additionally, a significant voxel-based correlation, in the left inferior fronto-occipital fasciculus, between AD and self-reported stress was found only for one of the normalization procedure (ANTs TBSS). In conclusion, the sensitivity to detect group-level effects on DTI metrics might depend on the DTI normalization and/or tensor fitting procedures used.
-
Exposure to chronic hypercortisolism has multiple adverse effects on brain biology in humans. Cushing's disease (CD) represents a unique and natural human model for examining the effects of hypercortisolism on the brain. This cross-sectional study used Diffusional Kurtosis Imaging (DKI) to investigate the microstructure alterations in both white matter (WM) and gray matter (GM) of CD patients and to determine the relationship of these changes with clinical characteristics. ⋯ Additionally, we also found altered kurtosis parameters in the cerebellum and frontal lobe. DKI imaging of CD patients could represent complementary information in both white matter and gray matter. The impairment of the left MTL might explain some part of the memory and cognition impairments in CD patients.