Brain research
-
Hypothermia has demonstrated neuroprotection following ischemia in preclinical studies while its clinical application is still very limited. The aim of this study was to explore whether combining local hypothermia in ischemic territory achieved by intra-arterial cold infusions (IACIs) with pharmacologically induced hypothermia enhances therapeutic outcomes, as well as the underlying mechanism. ⋯ The combination approach is able to enhance the efficiency of hypothermia and efficacy of hypothermia-induced neuroprotection following ischemic stroke. The findings here move us a step closer towards translating this long recognized TH from bench to bedside.
-
Traumatic brain injury (TBI) contributes to morbidity in children, and more boys experience TBI. Cerebral autoregulation is impaired after TBI, contributing to poor outcome. Cerebral Perfusion Pressure (CPP) is often normalized by use of vasoactive agents to increase mean arterial pressure (MAP). ⋯ These data indicate that DA protects autoregulation and limits hippocampal neuronal cell necrosis via block of ERK after FPI in male and female juvenile pigs. Of the vasoactive agents prior investigated, including norepinephrine, epinephrine, and phenylephrine, DA is the only one demonstrated to improve outcome after TBI in both sexes and ages. These data suggest that DA should be considered as a first line treatment to protect cerebral autoregulation and promote cerebral outcomes in pediatric TBI irrespective of age and sex.
-
Acute subdural hematoma (ASDH) is a frequent complication of severe head injury, whose secondary ischemic lesions are often responsible for the severity of the disease. We focused on the differences of secondary ischemic lesions caused by the components, 0.4ml venous- or arterial-blood, or saline, infused in the subdural space, evaluating the differences in vivo model, using rats. The saline infused rats are made for elderly atrophic brain with subdural effusion (SDE) model. ⋯ This study is the first study, in which different fluids in rats' subdural space, ASDH or SDE are compared with the extension of early and delayed brain damage by measuring brain edema and histological lesion volume. Blood constituents started to affect the degree of ischemia underneath the subdural hemorrhage, leading to more pronounced breakdown of the blood-brain barrier and brain damage. This indicates that further strategies to treat blood-dependent effects more efficiently are in view for patients with ASDH.
-
High-mobility group box1 (HMGB1) is a nuclear protein widely expressed in the central nervous system. Extracellular HMGB1 serves as a proinflammatory cytokine and contributes to brain injury during the acute stage post-stroke. Recently, increasing evidence has demonstrated beneficial effects of HMGB1 in some types of brain injury, but little is known about its effects during the late phase of subarachnoid hemorrhage (SAH). ⋯ Recombinant HMGB1 can promote cytokine stimulating activity and aggravate brain injury. However, oxidized HMGB1 was unable to stimulate TNF production but can promote brain recovery by promoting neurotrophin expression. In conclusion, our investigation identified that HMGB1 promotes neurovascular recovery via Rage and may act in the oxidized state in the late stage of SAH.