Brain research
-
Comparative Study
Adenosine treatment delays postischemic hippocampal CA1 loss after cardiac arrest and resuscitation in rats.
Resuscitation from cardiac arrest results in reperfusion injury that leads to increased postresuscitation mortality and delayed neuronal death. One of the many consequences of resuscitation from cardiac arrest is a derangement of energy metabolism and the loss of adenylates, impairing the tissue's ability to regain proper energy balance. In this study, we investigated the effects of adenosine (ADO) on the recovery of the brain from 12 min of ischemia using a rat model of cardiac arrest and resuscitation. ⋯ Our findings suggested that improved postischemic brain blood flow and ADO-induced hypothermia, rather than adenylate supplementation, may be the two major contributors to the neuroprotective effects of adenosine following cardiac arrest and resuscitation. Although adenosine did not prevent eventual CA1 neuronal loss in the long term, it did delay neuronal loss and promoted long-term survival. Thus, adenosine or specific agonists of adenosine receptors should be evaluated as adjuncts to broaden the window of opportunity in the treatment of the reperfusion injury following cardiac arrest and resuscitation.
-
Comparative Study
Arterial hypotension triggers perifocal depolarizations and aggravates secondary damage in focal brain injury.
Perifocal depolarizations (PFD) have been observed after traumatic brain injury, are known to disturb cerebrovascular reactivity and thus may contribute to the morphological consequences of brain injury. In this investigation, the role of PFD was studied in focal brain lesions with/without induction of delayed hypotension. Cerebral freeze lesions were induced in anesthetized normotensive rats that underwent perfusion fixation of brains 5 min, 4 h or 24 h after lesioning, respectively, to obtain quantitative histopathology. ⋯ In 6 of 8 rats that underwent cold lesion plus hypotension, a second PFD was observed approximately 2.5 min after onset of hypotension accompanied by a relative LDF increase by 25 +/- 12%. Lesion expansion was significantly worsened by hypotension (8.19 +/- 0.56 mm(3) at 24 h) compared with normotensive rats (7.01 +/- 0.3 mm(3) at 24 h, P < 0.01). We conclude that hypotension triggers depolarizations by an ischemic mechanism that contributes to final tissue damage.
-
Hyperalgesia following chronic morphine treatment is thought to be a response to opioid receptor activation and analgesia and contribute to the development of analgesic tolerance. Here, the relationship between these variables was studied in mice tested for nociceptive sensitivity on the tail-withdrawal test during chronic infusion of various morphine doses. Hyperalgesic onset was preceded by dose-dependent analgesia except for the lowest morphine dose, which caused hyperalgesia 6 h after the start of infusion. ⋯ In addition, acute injection of morphine-3beta-glucoronide (M3G) caused hyperalgesia that was cross-adaptive with the lower morphine dose only. The data demonstrate that morphine hyperalgesia is independent of prior or concurrent opioid receptor activity or analgesia and is unrelated to analgesic tolerance. Furthermore, the lack of hyperalgesic cross-adaptation between high and low morphine doses, and their differential cross-adaptation with M3G hyperalgesia, also suggests distinct morphine dose-dependent hyperalgesic systems.
-
Comparative Study
Activation of p38 mitogen-activated protein kinase in spinal microglia mediates morphine antinociceptive tolerance.
Compelling evidence has suggested that spinal glial cells were activated by chronic morphine treatment and involved in the development of morphine tolerance. However, the mechanisms of glial activation were still largely unknown in morphine tolerance. In present study, we investigated the role of p38 mitogen-activated protein kinase (p38 MAPK) in the spinal cord in the development of chronic morphine antinociceptive tolerance. ⋯ Taken together, these findings suggested that p38 MAPK activation in the spinal microglia was involved in the development of morphine antinociceptive tolerance. Inhibition of p38 MAPK by SB203580 in the spinal cord attenuated but not reversed the tolerance to morphine analgesia. The present study provides the first evidence that p38 activation in spinal microglia played an important role in the development of tolerance to morphine analgesia.
-
Our previous study has proven that hypothalamic paraventricular nucleus (PVN) played a role in the antinociception. The central bioactive substances involving in the PVN regulating antinociception were investigated in the rat. ⋯ There was a negative relationship between the PVN AVP concentration and the pain threshold; pain stimulation enhanced the AVP, not OXT mRNA expression in the PVN using in situ hybridization and RT-PCR; intraventricular injection of anti-AVP serum completely reversed L-glutamate sodium injection into the PVN-induced antinociception, and administration of naloxone - the opiate peptide antagonist, partly blocked this L-glutamate sodium effect, but anti-OXT serum pretreatment did not influence this L-glutamate sodium effect; L-glutamate sodium injection into the PVN-induced analgesia was inhibited by V2 receptor antagonist - d(CH2)5[D-Ile2, Ile4, Ala-NH2(9)]AVP, not V1 receptor antagonist - d(CH2)5Tyr(Me)AVP. The data suggested that the PVN was limited to the central AVP, not OXT, which was through V2, not V1 receptors influencing the endogenous opiate peptide system, to regulate antinociception.