Brain research
-
Paired-pulse transcranial magnetic stimulation (ppTMS) can be used to assess short-interval intracortical inhibitory (SICI) and facilitatory (ICF) networks. Many methodological parameters may however influence the outcome. The aim of the study was to examine the influence of body positions (recline and supine), inter-stimulus intervals (ISI) between the test stimulus (TS) and conditioning stimulus (CS) and intensities of the TS and CS on the degree of SICI and ICF. ⋯ There was a significant effect of body position (P=0.049), TS intensities (P<0.001) and ISIs (P<0.001) and interaction between intensity and ISIs (P=0.042) in study 1. In study 2, there was a significant effect of ISI (P<0.001) but not CS intensity (P=0.984) on MEP amplitude. These results may be applied in future studies on the mechanisms of cortical plasticity in the tongue motor pathways using ppTMS and SICI and ICF.
-
Recently, the transient receptor potential (TRP) channels TRPM8 and TRPA1 have been identified as molecular sensors for cold, and it has been suggested that they play a crucial role in allodynia by modulating voltage-gated calcium channel currents (ICa(V)). The aim of this study was to analyze the modulation of ICa(V) by the TRPM8-agonist icilin in vitro and to investigate the analgesic effect of icilin in a neuropathic pain model in vivo. Whole cell patch-clamp recordings were performed on isolated naïve and injured rat dorsal root ganglia (DRG) neurons, and the analgesic efficacy of icilin applied topically to the paws or intrathecally was tested in rats after spinal nerve ligation (SNL). ⋯ The effects of icilin on ICa(V) were not significantly different in non-injured and SNL-injured DRG neurons. In vivo, neither topical (10-200µM) nor intrathecal application of icilin (0.1nM to 1µM) affected tactile allodynia or thermal hyperalgesia after SNL, but it increases cold allodynia 6h after application. We conclude that the icilin-induced modulation of ICa(V) in DRG neurons is unlikely to mediate analgesic effects or contribute directly to the pathogenesis of cold allodynia in the rat SNL model, but it is a potential mechanism for the analgesic effects of icilin in other pain models.
-
Hypoxic-ischemic encephalopathy (HIE) resulting from perinatal asphyxia often leads to severe neurologic impairment or even death. There is a need to advance therapy for infants with HIE, for example to combine hypothermia with pharmacological treatment strategies. Levetiracetam (LEV) is approved for clinical administration to infants older than 4 weeks of age and is also used off-label in neonates. Furthermore, LEV was shown to be neuroprotective in adult animal models of brain injury. ⋯ This study demonstrates that LEV treatment increases neonatal hypoxic-ischemic brain injury. Administration of LEV in the acute phase of the injury might interfere with the balanced activation and inactivation of excitatory and inhibitory receptors in the developing brain. The neurotoxic effect of LEV in the injured newborn brain might further suggest an agonistic effect of LEV on the GABAergic system. Hypothermia treatment attenuates glutamate release following hypoxic-ischemic brain injury and might therefore limit the potentially deleterious effects of LEV. As a consequence, our findings do not necessarily rule out a potentially beneficial effect, but argue for cautious use of LEV in newborn infants with pre-existing brain injury.
-
Recent studies have shown that fingolimod (FTY720) is neuroprotective in CNS injury models of cerebral ischemia and spinal cord injury. The purpose of the study was to examine the effect of fingolimod in a mouse model of intracerebral hemorrhage. ICH was produced in adult CD1 mice by injecting collagenase VII-S (0.5 µL, 0.06 U) into the basal ganglia. ⋯ More importantly, fingolimod enhanced neurobehavioral recovery. Preliminary experiments showed no difference in the number of inflammatory (CD68-positive) cells between the two groups. In conclusion, fingolimod exerts protective effects in a mouse model of intracerebral hemorrhage; the mechanisms underlying these neuroprotective effects deserve further study.
-
Role of ATP-sensitive potassium channels in modulating nociception in rat model of bone cancer pain.
Bone cancer pain is a major clinical problem and remains difficult to treat. ATP-sensitive potassium (KATP) channels may be involved in regulating nociceptive transmission at the spinal cord level. We determined the role of spinal KATP channels in the control of mechanical hypersensitivity in a rat model of bone cancer pain. ⋯ The mRNA and protein levels of Kir6.2 in the spinal cord of cancer cell-injected rats were significantly lower than those in control rats. Our findings suggest that the KATP channel expression level in the spinal cord is reduced in bone cancer pain. Activation of KATP channels at the spinal level reduces pain hypersensitivity associated with bone cancer pain.