Brain research
-
Ketamine, an analgesic/anesthetic drug, is increasingly popular in clinical practice due to its analgesic properties and importance for emergency procedures. The impact of ketamine on basal excitatory synaptic transmission and synaptic plasticity are not yet fully understood. Therefore we investigated the effects of different concentrations of ketamine on basal excitatory synaptic transmission and on two forms of synaptic plasticity: paired-pulse facilitation (PPF) and long-term potentiation (LTP). ⋯ Clinically relevant concentrations of ketamine decreased LTP in a concentration-dependent manner without changing PPF, whereas basal excitatory synaptic transmission and presynaptic volley amplitude was affected only with high concentrations of ketamine (300 and 600μM). These results allow dissociating the blockade of LTP from a reduced synaptic input in the action of clinically relevant concentrations of ketamine in the CA1 region of the mouse hippocampus. Moreover, this work shows that the effects of ketamine on LTP and on basal synaptic transmission are dependent of the concentration used.
-
Recently, the transient receptor potential (TRP) channels TRPM8 and TRPA1 have been identified as molecular sensors for cold, and it has been suggested that they play a crucial role in allodynia by modulating voltage-gated calcium channel currents (ICa(V)). The aim of this study was to analyze the modulation of ICa(V) by the TRPM8-agonist icilin in vitro and to investigate the analgesic effect of icilin in a neuropathic pain model in vivo. Whole cell patch-clamp recordings were performed on isolated naïve and injured rat dorsal root ganglia (DRG) neurons, and the analgesic efficacy of icilin applied topically to the paws or intrathecally was tested in rats after spinal nerve ligation (SNL). ⋯ The effects of icilin on ICa(V) were not significantly different in non-injured and SNL-injured DRG neurons. In vivo, neither topical (10-200µM) nor intrathecal application of icilin (0.1nM to 1µM) affected tactile allodynia or thermal hyperalgesia after SNL, but it increases cold allodynia 6h after application. We conclude that the icilin-induced modulation of ICa(V) in DRG neurons is unlikely to mediate analgesic effects or contribute directly to the pathogenesis of cold allodynia in the rat SNL model, but it is a potential mechanism for the analgesic effects of icilin in other pain models.
-
Paired-pulse transcranial magnetic stimulation (ppTMS) can be used to assess short-interval intracortical inhibitory (SICI) and facilitatory (ICF) networks. Many methodological parameters may however influence the outcome. The aim of the study was to examine the influence of body positions (recline and supine), inter-stimulus intervals (ISI) between the test stimulus (TS) and conditioning stimulus (CS) and intensities of the TS and CS on the degree of SICI and ICF. ⋯ There was a significant effect of body position (P=0.049), TS intensities (P<0.001) and ISIs (P<0.001) and interaction between intensity and ISIs (P=0.042) in study 1. In study 2, there was a significant effect of ISI (P<0.001) but not CS intensity (P=0.984) on MEP amplitude. These results may be applied in future studies on the mechanisms of cortical plasticity in the tongue motor pathways using ppTMS and SICI and ICF.
-
Sevoflurane is one of inhalation anesthetics and has been commonly used in obstetric and pediatric anesthesia. The widespread use of sevoflurane in newborns and infants has made its safety a health issue of concern. Voltage-gated Ca(2+) channels (VGCCs) play an important role in neuronal excitability and are essential for normal brain development. ⋯ Both the slope factor (k) of Ca(2+) channels activation and inactivation curves increased by 3% sevoflurane at week 1 (p<0.05). Therefore, early exposure to sevoflurane persistently inhibits Ca(2+) channels activity in hippocampal CA1 pyramidal neurons of developing rats but the development of Ca(2+) channels recovers to normal level at juvenile age. Moreover, the inhibition of 3% sevoflurane on VGCCs is greater than that of 2.1% sevoflurane.
-
Comprehending a language (or code) switch within a sentence context triggers 2 electrophysiological signatures: an early left anterior negativity post code switch onset - a LAN - followed by a Late Positive Component (LPC). Word class and word position modulate lexico-semantic processes in the monolingual brain, e.g., larger N400 amplitude for nouns than verbs and for earlier than later words in the sentence. Here we test whether the bilingual brain is affected by word class and word position when code switching, or if the cost of switching overrides these lexico-semantic and sentence context factors. ⋯ Moreover, an early LPC effect was observed only for switched nouns, but not verbs. Together, this indicates that referential elements (nouns) may be harder to process and integrate than relational elements (verbs) in discourse, and when switched, nouns incur higher integration cost. Word position did not modulate the code switching effects, implying that switching between languages may invoke discourse independent processes.