-
- Patrícia O Ribeiro, Angelo R Tomé, Henrique B Silva, Rodrigo A Cunha, and Luís M Antunes.
- Instituto de Biologia Molecular e Celular, Laboratory Animal Science, Rua do Campo Alegre 823, 4150-180 Porto, Portugal; Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, Apartado 1013, 5001-801 Vila Real, Portugal; CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal. Electronic address: topatricia.ribeiro.fafe@gmail.com.
- Brain Res. 2014 Apr 29;1560:10-7.
AbstractKetamine, an analgesic/anesthetic drug, is increasingly popular in clinical practice due to its analgesic properties and importance for emergency procedures. The impact of ketamine on basal excitatory synaptic transmission and synaptic plasticity are not yet fully understood. Therefore we investigated the effects of different concentrations of ketamine on basal excitatory synaptic transmission and on two forms of synaptic plasticity: paired-pulse facilitation (PPF) and long-term potentiation (LTP). Evoked field excitatory postsynaptic potentials (fEPSP) were recorded in Schaffer fiber - CA1 pyramid synapses of mouse hippocampal slices and the initial slope of the fEPSP was measured to estimate the percentage of inhibition of the basal synaptic transmission. Presynaptic volley amplitude, PPF and LTP induction and maintenance were also calculated. For basal synaptic transmission and PPF increasing concentrations of ketamine (1, 3, 10, 30, 100, 200, 300 and 600μM) were applied to each slice and for LTP individual slices were used for each concentration (3, 10, 30 or 100μM). Clinically relevant concentrations of ketamine decreased LTP in a concentration-dependent manner without changing PPF, whereas basal excitatory synaptic transmission and presynaptic volley amplitude was affected only with high concentrations of ketamine (300 and 600μM). These results allow dissociating the blockade of LTP from a reduced synaptic input in the action of clinically relevant concentrations of ketamine in the CA1 region of the mouse hippocampus. Moreover, this work shows that the effects of ketamine on LTP and on basal synaptic transmission are dependent of the concentration used.Copyright © 2014 Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.