Journal of neural transmission
-
There is growing evidence indicating that reactive nitrogen species (RNS) and reactive oxygen species (ROS) are a major contributor to the pathogenesis and progression of Parkinson's disease. Here we investigated whether edaravone (free radical scavenger), minocycline (inducible nitric oxide synthase, iNOS inhibitor), 7-nitroindazole (neuronal NOS, nNOS inhibitor), fluvastatin (endothelial NOS, eNOS activator) and pitavastatin (eNOS activator) can protect against MPTP neurotoxicity in mice under the same condition. The present study showed that 7-nitroindazole could protect dose-dependently against the striatal dopamine depletions in mice 5 days after MPTP treatment. ⋯ In contrast, edaravone, minocycline, fluvastatin and pitavastatin did not show the neuroprotective effect on MPTP-induced striatal dopamine depletions. These findings demonstrate that the overexpression of nNOS may play a major role in the neurotoxic processes of MPTP, as compared to the production of ROS, the overexpression of iNOS and the modulation of eNOS. Thus, our findings provide strong evidence for neuroprotective properties of nNOS inhibitor in this animal model of Parkinson's disease.