Journal of the peripheral nervous system : JPNS
-
Neurotoxic side effects of cancer therapy are second in frequency to hematological toxicity. Unlike hematological side effects that can be treated with hematopoietic growth factors, neuropathies cannot be treated and protective treatment strategies have not been effective. For the neurologist, the diagnosis of a toxic neuropathy is primarily based on the case history, the clinical and electrophysiological findings, and knowledge of the pattern of neuropathy associated with specific agents. ⋯ The neurologist managing the cancer patient who develops neuropathy must answer a series of important questions as follows: (1) Are the symptoms due to peripheral neuropathy? (2) Is the neuropathy due to the underlying disease or the treatment? (3) Should treatment be modified or stopped because of the neuropathy? (4) What is the best supportive care in terms of pain management or physical therapy for each patient? Prevention of toxic neuropathies is most important. In patients with neuropathy, restorative approaches have not been well established. Symptomatic and other management are necessary to maintain and improve quality of life.
-
J. Peripher. Nerv. Syst. · Mar 2008
Comparative StudyHigh- and low-frequency transcutaneous electrical nerve stimulation delay sciatic nerve regeneration after crush lesion in the mouse.
The stimulation of peripheral nerve regeneration has been studied in different ways, including the use of electrical fields. The capacity of this modality to enhance nerve regeneration is influenced by the parameters used, including current type, frequency, intensity, and means of administration. Transcutaneous electrical nerve stimulation (TENS) is a frequently used form of administering electrical current to the body, but its effects on peripheral nerve regeneration are not known. ⋯ Electronmicrographs showed fewer and thinner thick myelinated fibers and increased number of Schwann cell nuclei. Myelinated axon diameters and density and diameter of nonmyelinated fibers were not affected by TENS, leading to the conclusion that this regimen of electrical stimulation leads to a delayed regeneration after a crush lesion of the sciatic nerve in the mouse. All these effects were more pronounced on high-frequency TENS nerves.