Journal of the peripheral nervous system : JPNS
-
J. Peripher. Nerv. Syst. · Dec 2019
Liability of the voltage-gated potassium channel KCNN3 repeat polymorphism to acute oxaliplatin-induced peripheral neurotoxicity.
Thus far, there are conflicting results on the causal role of K+ channels in the pathogenesis of acute oxaliplatin-induced peripheral neurotoxicity (OXAIPN). As such, we tested the hypothesis that the voltage-gated K+ channel KCNN3 repeat polymorphism confers liability to acute OXAIPN. DNA from 151 oxaliplatin-treated patients for colorectal cancer was extracted and genotyped. ⋯ Patients carrying alleles with either 15 to 17 CAG repeats (P = .601) did not experience a higher incidence of grade III (treatment-emergent) acute OXAIPN. Likewise, no increased incidence of acute treatment-emergent OXAIPN was noted in heterozygous patients carrying either two short alleles (<19 CAG repeats) or one short and one long (≥19 CAG repeats) allele (P = .701). Our results do not support a causal relationship between the KCNN3CAG repeat polymorphism and acute OXΑIPN.