Biochemical and biophysical research communications
-
Biochem. Biophys. Res. Commun. · Apr 2000
Inhibition of human lung cancer cell growth by the peroxisome proliferator-activated receptor-gamma agonists through induction of apoptosis.
Peroxisome proliferator-activated receptors (PPARs), members of the nuclear hormone receptors superfamily, have an important regulatory role in adipogenesis and inflammation. PPAR-gamma ligands induce terminal differentiation and growth inhibition of human breast cancer cells and prostatic cancer cells. ⋯ However, PPAR-alpha agonist (bezafibrate) and other prostanoids (PGE(2), PGF(2alpha)) did not induce apoptosis. These findings suggest that PPAR-gamma may play an important role in the pathogenesis of lung cancer and that PPAR-gamma agonist may be useful therapeutic agents in the treatment of human lung cancer.
-
Biochem. Biophys. Res. Commun. · Apr 2000
Comparative StudyThe mevalonate/isoprenoid pathway inhibitor apomine (SR-45023A) is antiproliferative and induces apoptosis similar to farnesol.
Apomine (SR-45023A) is a new antineoplastic compound which is currently in clinical trials and representative of the family of cholesterol synthesis inhibitors 1,1-bisphosphonate esters. Apomine inhibits growth of a wide variety of tumor cell lines with IC(50) values ranging from 5 to 14 microM. The antiproliferative activity of apomine was studied in comparison with that of other inhibitors of the mevalonate/isoprenoid pathway of cholesterol synthesis, simvastatin, farnesol, and 25-hydroxycholesterol. ⋯ Apomine and farnesol induced caspase-3 activity at concentrations similar to their IC(50) values for cell proliferation, whereas a 10-fold excess of simvastatin was necessary to trigger apoptosis compared to its potency on proliferation. Caspase-3 activity was not induced by 25-hydroxycholesterol. The overall similar profile on mevalonate synthesis inhibition, cell growth inhibition, and apoptosis suggests that apomine acts as a synthetic mimetic of farnesol.