Biochemical and biophysical research communications
-
Biochem. Biophys. Res. Commun. · Jun 2004
Comparative StudyInvasiveness of breast carcinoma cells and transcript profile: Eph receptors and ephrin ligands as molecular markers of potential diagnostic and prognostic application.
The Eph family of receptors, with 14 members in humans, makes up the largest group of receptor tyrosine kinases. These Eph receptors, along with their ligands, the 8 members of the ephrin family of ligands are involved in diverse developmental functions, including hindbrain development in vertebrates, tissue patterning, and angiogenesis. These Eph receptors and ephrin ligands have also been identified as important regulators in the development and progression of cancer. ⋯ We demonstrate here that upregulation of EphA2, A7, A10, and ephrinA2 and B3 is likely involved in tumorigenesis and/or invasiveness, while downregulation of EphA1, A3, A4, A8, B3, B4, B6, and ephrinA1 and B1 may be particularly important in invasiveness. Based on these results we discuss the role of EphA2 and ephrinA1 combination in malignancy. The data have provided clues as to the importance of these molecules in the progression of breast cancer and specifically identified EphB6, a kinase-deficient receptor, which is downregulated in the most aggressive cell line, as reported for several other cancer types including neuroblastoma and melanoma suggesting its potential as a prognostic indicator in breast cancer as well.
-
Biochem. Biophys. Res. Commun. · Jun 2004
Biodistribution of intracellularly acting peptides conjugated reversibly to Tat.
Intracellularly acting peptide modulators of signaling enzymes provide a powerful means to regulate signaling events. Delivery of peptides into cells is facilitated by conjugation to carrier peptides, such as Tat. When peptides are irreversibly conjugated to Tat, Tat-mediated subcellular localization may predominate, resulting in mislocalization of the peptide cargo. ⋯ We show here intravascular delivery of a PKC-peptide, reversibly conjugated to Tat, resulted in distribution throughout cardiac tissue. In addition, a single injection resulted in selective modulation of PKC activity in many organs. Therefore, intracellularly acting peptide modulators of signaling enzymes, reversibly conjugated to Tat, have extensive biodistribution and can be used to modulate signaling pathways in vivo.