Biochemical and biophysical research communications
-
Biochem. Biophys. Res. Commun. · Dec 2009
ReviewTRESK channel as a potential target to treat T-cell mediated immune dysfunction.
In this review, we propose that TRESK background K(+) channel could serve as a potential therapeutic target for T-cell mediated immune dysfunction. TRESK has many immune function-related properties. TRESK is abundantly expressed in the thymus, the spleen, and human leukemic T-lymphocytes. ⋯ Calcineurin has been found to interact with TRESK via specific NFAT-like docking site. When the T-cell is activated, calcineurin can bind to the NFAT-docking site of TRESK. The activation of both TRESK and NFAT via Ca(2+)-calcineurin-NFAT/TRESK pathway could modulate the transcription of new genes in addition to regulating several aspects of T-cell function.
-
The neuraminidase inhibitor oseltamivir has been identified to have significant anti-influenza activity in clinical practice. However, its efficacy has not been verified in enough subtypes of influenza A virus, particularly, the current pandemic virus, H1N1. ⋯ Conversely, a boosting effect on viral infection was observed, particularly with the 2009 H1N1 pp at oseltamivir concentrations above 0.025muM. Further testing on two wild 2009 H1N1 virus strains, A/California/07/09 and A/Sichuan/1/09, as well as a seasonal flu virus, A/Baoan/51/2008, confirmed these findings.
-
Biochem. Biophys. Res. Commun. · Dec 2009
Impaired TLR3/IFN-beta signaling in monocyte-derived dendritic cells from patients with acute-on-chronic hepatitis B liver failure: relevance to the severity of liver damage.
Toll-like receptors (TLRs) are a class of proteins that play key roles in innate immunity through recognition of microbial components. TLR3 is expressed abundantly in dendritic cells, and is responsible for recognizing viral pathogens and inducing interferon beta (IFN-beta) production. Although TLR3 has been reported to be involved in several diseases caused by viral infections, its role in hepatitis B virus (HBV)-induced hepatitis is still largely unknown. ⋯ Compared with surviving patients, TLR3 and IFN-beta expression was significantly lower in non-surviving ACHBLF patients, which strongly indicated a correlation between TLR3 signaling impairment in MoDCs and disease severity in ACHBLF patients. Further linear correlation analysis demonstrated significant correlations between expression of TLR3 signaling components (TLR3 and IFN-beta) and disease severity markers (prothrombin activity and total bilirubin) for individual ACHBLF patients. To the best of our knowledge, this is the first study to show that MoDC impairment is correlated with severe liver damage in ACHBLF patients, which suggests the potential of TLR3/IFN-beta expression in MoDCs as a diagnostic marker.
-
Biochem. Biophys. Res. Commun. · Dec 2009
An aggregate-prone mutant of human glyceraldehyde-3-phosphate dehydrogenase augments oxidative stress-induced cell death in SH-SY5Y cells.
Glycerladehyde-3-phosphate dehydrogenase (GAPDH), a classic glycolytic enzyme, also has a role in mediating cell death under oxidative stress. Our previous reports suggest that oxidative stress-induced GAPDH aggregate formation is, at least in part, a mechanism to account for the death signaling. Here we show that substitution of cysteine for serine-284 of human GAPDH (S284C-GAPDH) leads to aggregate-prone GAPDH, and that its expression in SH-SY5Y human neuroblastoma results in greater dopamine-induced cell death than expression of wild type-GAPDH. ⋯ Several lines of structural analysis revealed that S284C-GAPDH was amyloidogenic. Overexpression of doxycycline-inducible S284C-GAPDH in SH-SY5Y cells accelerated dopamine treatment-induced death and increased formation of GAPDH aggregates, compared to cells expressing wild type-GAPDH. These results suggest that aggregate-prone mutations of GAPDH such as S284C-GAPDH may confer risk of oxidative stress-induced cell death.
-
Biochem. Biophys. Res. Commun. · Dec 2009
Erythromelalgia mutation L823R shifts activation and inactivation of threshold sodium channel Nav1.7 to hyperpolarized potentials.
Erythromelalgia (also termed erythermalgia) is a neuropathic pain syndrome, characterized by severe burning pain combined with redness in the extremities, triggered by mild warmth. The inherited form of erythromelalgia (IEM) has recently been linked to mutations in voltage-gated sodium channel Nav1.7, which is expressed in peripheral nociceptors. Here, we used whole-cell voltage-clamp recordings in HEK293 cells to characterize the IEM mutation L823R, which introduces an additional positive charge into the S4 voltage sensor of domain II. ⋯ The L823R mutation induces a approximately 10mV hyperpolarizing shift in fast-inactivation. L823R is the only naturally-occurring IEM mutation studied thus far to shift fast-inactivation to more negative potentials. We conclude that introduction of an additional charge into the S4 segment of domain II of Nav1.7 leads to a pronounced hyperpolarizing shift of activation, a change that is expected to increase nociceptor excitability despite the hyperpolarizing shift in fast-inactivation, which is unique among the IEM mutations.