Biochemical and biophysical research communications
-
Biochem. Biophys. Res. Commun. · Aug 2010
Very rapid induction of a cold shock protein by temperature downshift in Thermus thermophilus.
A rapid temperature downshift induces the expression of many proteins termed 'cold-induced' proteins. Although some of these proteins are known to participate in metabolism, transcription, translation and protein folding, processes that are affected by cold stress, it has not yet been identified which proteins sense the temperature downshift. Here we analyzed the mRNA expression profiles of genes induced immediately following a temperature downshift in Thermus thermophilus HB8. ⋯ A temperature-dependent secondary structure was predicted to form in the 5'-untranslated region, including the Shine-Dalgarno sequence, of ttcsp2 mRNA. Stabilization of this secondary structure at 45 degrees C was assumed to prevent degradation of ttcsp2 mRNA and to slow translation. Thus, ttCSP2 is considered to act as a 'thermosensor' during temperature downshift through changes in its secondary structure.
-
Biochem. Biophys. Res. Commun. · Aug 2010
Role of different nitric oxide synthase isoforms in a murine model of acute lung injury and sepsis.
Excessive production of nitric oxide (NO) by NO synthase (NOS) with subsequent formation of peroxynitrite and poly(adenosine diphosphate ribose) is critically implemented in the pathophysiology of acute lung injury and sepsis. To elucidate the roles of different isoforms of NOS, we tested the effects of non-selective NOS inhibition and neuronal NOS (nNOS)- and inducible NOS (iNOS)-gene deficiency on the pulmonary oxidative and nitrosative stress reaction in a murine sepsis model. The injury was induced by four sets of cotton smoke using an inhalation chamber and subsequent intranasal administration of live Pseudomonas aeruginosa (3.2x10(7) colony-forming units). ⋯ Treatment with a non-selective NOS inhibitor failed to reduce the oxidative and nitrosative stress reaction to the same extent and even tended to increase mortality. In conclusion, the current study demonstrates that both nNOS and iNOS are partially responsible for the pulmonary oxidative and nitrosative stress reaction in this model. Future studies should investigate the effects of specific pharmacological inhibition of nNOS and iNOS at different time points during the disease process.
-
Biochem. Biophys. Res. Commun. · Aug 2010
Tanshinone IIA improves impaired nerve functions in experimental diabetic rats.
Diabetic neuropathy is one of the most common complications in diabetes mellitus. Thus far, effective therapeutic agents for restoring the impaired motor and sensory nerve functions in diabetic neuropathy are still lacking. The antioxidant and neuroprotective properties of tanshinone IIA make it a promising candidate for the treatment of diabetic neuropathy. ⋯ We found that tanshinone IIA was capable of restoring diabetes-induced deficit in nerve functions (MNCV and NBF), and impairment in thermal and mechanical nociceptive capability. In addition, tanshinone IIA significantly increased the serum total antioxidant capability, improved the activities of Na(+),K(+)ATPase, increased the levels of SOD and catalase, and reduced the MDA level in sciatic nerves in diabetic rats. All the findings indicate the beneficial effect of tanshinone IIA on impaired nerve functions and raise the possibility of developing tanshinone IIA as a therapeutic agent for diabetic neuropathy.