Biochemical and biophysical research communications
-
Biochem. Biophys. Res. Commun. · Apr 2011
Independent and joint modulation of rat Nav1.6 voltage-gated sodium channels by coexpression with the auxiliary β1 and β2 subunits.
The Na(v)1.6 voltage-gated sodium channel α subunit isoform is the most abundant isoform in the brain and is implicated in the transmission of high frequency action potentials. Purification and immunocytochemical studies imply that Na(v)1.6 exist predominantly as Na(v)1.6+β1+β2 heterotrimeric complexes. We assessed the independent and joint effects of the rat β1 and β2 subunits on the gating and kinetic properties of rat Na(v)1.6 channels by recording whole-cell currents in the two-electrode voltage clamp configuration following transient expression in Xenopus oocytes. ⋯ The β2 subunit selectively retarded the fast phase of fast inactivation and shifted the voltage dependence of activation towards depolarization without affecting other gating properties and had no effect on the decline of currents following repeated depolarization. The β1 and β2 subunits expressed together accelerated both kinetic phases of fast inactivation, shifted the voltage dependence of activation towards hyperpolarization, and gave currents with a persistent component typical of those recorded from neurons expressing Na(v)1.6 sodium channels. These results identify unique effects of the β1 and β2 subunits and demonstrate that joint modulation by both auxiliary subunits gives channel properties that are not predicted by the effects of individual subunits.
-
Biochem. Biophys. Res. Commun. · Apr 2011
Augmented oxygen-mediated transcriptional activation of cytochrome P450 (CYP)1A expression and increased susceptibilities to hyperoxic lung injury in transgenic mice carrying the human CYP1A1 or mouse 1A2 promoter in vivo.
Supplemental oxygen administration is frequently administered to pre-term and term infants having pulmonary insufficiency. However, hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Cytochrome P450 (CYP)A enzymes have been implicated in hyperoxic lung injury. ⋯ Also, these mice showed decreased levels of endogenous CYP1A1 and 1A2 expression after prolonged hyperoxia, and were also more susceptible to lung injury than similarly exposed WT mice, with CYP1A2-luc mice showing the greatest injury. Our results support the hypothesis that hyperoxia induces CYP1A enzymes by transcriptional activation of its corresponding promoters, and that decreased endogenous expression of these enzymes contribute to the increased susceptibilities to hyperoxic lung injury in the transgenic animals. In summary, this is the first report providing direct evidence of hyperoxia-mediated induction of CYP1A1 and CYP1A2 expression in vivo by mechanisms entailing transcriptional activation of the corresponding promoters, a phenomenon that has implications for hyperoxic lung injury, as well as other pathologies caused by oxidative stress.