Biochemical and biophysical research communications
-
Biochem. Biophys. Res. Commun. · Feb 2013
Increased expression of microRNA-221 inhibits PAK1 in endothelial progenitor cells and impairs its function via c-Raf/MEK/ERK pathway.
Coronary artery disease (CAD) is associated with high mortality and occurs via endothelial injury. Endothelial progenitor cells (EPCs) restore the integrity of the endothelium and protect it from atherosclerosis. In this study, we compared the expression of microRNAs (miRNAs) in EPCs in atherosclerosis patients and normal controls. ⋯ We confirmed this relationship using a luciferase reporter assay. Furthermore, overexpression of miR-221 in EPCs significantly decreased EPC proliferation, in accordance with the inhibitory effects induced by decreased PAK1. Overall, these findings demonstrate that miR-221 affects the MEK/ERK pathway by targeting PAK1 to inhibit the proliferation of EPCs.
-
Biochem. Biophys. Res. Commun. · Feb 2013
Resveratrol suppresses tumor progression via the regulation of indoleamine 2,3-dioxygenase.
This study showed the potential of resveratrol to inhibit the expression and activity of interferon-γ (IFN-γ)-induced indoleamine 2,3-dioxygenase (IDO) in bone marrow-derived dendritic cells (BMDCs). The mechanism of suppression was associated with the activity of Janus kinase/signal transducers and activators of transcription (JAK/STAT) and protein kinase Cδ (PKCδ). ⋯ Systemic administration of resveratrol suppressed tumor growth in EG7 thymoma-bearing mice in an IDO-dependent manner. Taken together, resveratrol not only regulates immune response through the regulation of IDO in a JAK/STAT1- and PKCδ-dependent manner, but also modulates the IDO-mediated immune tolerance in EG7 thymoma.