Biochemical and biophysical research communications
-
Biochem. Biophys. Res. Commun. · Jul 2014
Lithium potentiates GSK-3β activity by inhibiting phosphoinositide 3-kinase-mediated Akt phosphorylation.
Accumulating evidence has pointed to the direct inhibitory action of lithium, an anti-depressant, on GSK-3β. The present study investigated further insight into lithium signaling pathways. In the cell-free assay Li2CO3 significantly inhibited phosphoinositide 3-kinase (PI3K)-mediated phosphorylation of Akt1 at Ser473, but Li2CO3 did not affect PI3K-mediated PI(3,4,5)P3 production and 3-phosphoinositide-dependent protein kinase 1 (PDK1)-mediated phosphorylation of Akt1 at Thr308. ⋯ This indicates that lithium directly inhibits GSK-3β in an Akt-independent manner. In rat hippocampal slices Li2CO3 significantly inhibited phosphorylation of Akt1/2 at Ser473/474, GSK-3β at Ser9, and β-catenin at Ser33/37 and Thr41. Taken together, these results indicate that lithium exerts its potentiating and inhibiting bidirectional actions on GSK-3β activity.
-
Biochem. Biophys. Res. Commun. · Jul 2014
14,15-EET promotes mitochondrial biogenesis and protects cortical neurons against oxygen/glucose deprivation-induced apoptosis.
14,15-Epoxyeicosatrienoic acid (14,15-EET), a metabolite of arachidonic acid, is enriched in the brain cortex and exerts protective effect against neuronal apoptosis induced by ischemia/reperfusion. Although apoptosis has been well recognized to be closely associated with mitochondrial biogenesis and function, it is still unclear whether the neuroprotective effect of 14,15-EET is mediated by promotion of mitochondrial biogenesis and function in cortical neurons under the condition of oxygen-glucose deprivation (OGD). In this study, we found that 14,15-EET improved cell viability and inhibited apoptosis of cortical neurons. 14,15-EET significantly increased the mitochondrial mass and the ratio of mitochondrial DNA to nuclear DNA. ⋯ Moreover, 14,15-EET markedly attenuated the decline of mitochondrial membrane potential, reduced ROS, while increased ATP synthesis. Knockdown of cAMP-response element binding protein (CREB) by siRNA blunted the up-regulation of PGC-1α and NRF-1 stimulated by 14,15-EET, and consequently abolished the neuroprotective effect of 14,15-EET. Our results indicate that 14,15-EET protects neurons from OGD-induced apoptosis by promoting mitochondrial biogenesis and function through CREB mediated activation of PGC-1α and NRF-1.
-
Biochem. Biophys. Res. Commun. · Jul 2014
Isorhynchophylline protects against pulmonary arterial hypertension and suppresses PASMCs proliferation.
Increased pulmonary arterial smooth muscle cells (PASMCs) proliferation is a key pathophysiological component of pulmonary vascular remodeling in pulmonary arterial hypertension (PAH). Isorhynchophylline (IRN) is a tetracyclic oxindole alkaloid isolated from the Chinese herbal medicine Uncaria rhynchophylla. It has long been used clinically for treatment of cardiovascular and cerebrovascular diseases. ⋯ These results demonstrate that IRN could inhibit PASMCs proliferation and attenuate pulmonary vascular remodeling after MCT induction. These beneficial effects were at least through the inhibition of PDGF-Rβ phosphorylation and its downstream signaling pathways. Therefore, IRN might be a potential candidate for the treatment of PAH.
-
Biochem. Biophys. Res. Commun. · Jul 2014
Upregulation of tumor necrosis factor-alpha in nucleus accumbens attenuates morphine-induced rewarding in a neuropathic pain model.
Treatment of neuropathic pain with opioid analgesics remains controversial and a major concern is the risk of addiction. Here, we investigated this issue with spared nerve injury (SNI) model of neuropathic pain in rats and mice. SNI prevented conditioned place preference (CPP) induced by low dose (3.5mg/kg) of morphine (MOR), which was effective for anti-allodynia, but not by high dose (⩾5.0 mg/kg) of MOR. ⋯ Accordingly, the increase in DA reuptake but not decrease in its synthesis may lead to the reduction of DA level. Finally, the upregulation of DAT in the NAcc of SNI animals was again blocked by either genetic deletion of TNFR1 or NAcc injection of anti-TNF-α, and was mimicked by NAcc injection of TNF-α in sham animals. Thus, our data provided novel evidence that upregulation of TNF-α in NAcc may attenuate MOR-induced rewarding by upregulation of DAT in NAcc under neuropathic pain condition.
-
Biochem. Biophys. Res. Commun. · Jul 2014
Discovery and pharmacological characterization of a novel small molecule inhibitor of phosphatidylinositol-5-phosphate 4-kinase, type II, beta.
Phosphatidylinositol-5-phosphate 4-kinase, type II, beta (PIP5K2B) is linked to the pathogenesis of obesity, insulin resistance and diabetes. Here, we describe the identification of a novel pyrimidine-2,4-diamine PIP5K2B inhibitor, designated SAR088. ⋯ In vivo, SAR088 lowered blood glucose levels of obese and hyperglycemic male Zucker diabetic fatty rats treated for 3 weeks. Thus, SAR088 represents the first orally available and in vivo active PIP5K2B inhibitor and provides an excellent starting point for the development of potent and selective PIP5K2B inhibitors for the treatment of insulin resistance and diabetes.